化学化工、动力工程

文章编号: 1000-8608(2007)04-0488-06

氧化镁晶须制备及影响因素考查

薛冬峰*1,2, 邹龙江', 闫小星', 王 雷', 王晓丽'

(1.大连理工大学 精细化工国家重点实验室,辽宁 大连 116012;
 2大连理工大学 辽宁省微纳米技术及系统重点实验室,辽宁 大连 116012)

摘要: 为了促进氧化镁晶须的规模化生产与工业应用,采用前驱物煅烧法制备了氧化镁晶须.以氯化镁为原料、碳酸钠为沉淀剂制备了结晶良好的水合碳酸镁晶须;控制碳酸镁的热分解条件保持晶须形状不被破坏,在煅烧情况下将其转变为氧化镁晶须.采用 X射线衍射仪和扫描电子显微镜对产物的组成、形态和结构进行了表征.结果表明,所得氧化镁晶须直径 2 ~ 5^µm,长度约为 60^µm.另外,对影响晶须形成的一些主要因素进行了初步探讨,同时简要介绍了利用碱式氯化镁、碱式硫酸镁获得氧化镁晶须的方法,探索性地拓展了氧化镁晶须的工业生产.

关键词:氧化镁;晶须;影响因素 中图分类号: 0164.22 文献标识码: A

0 引 言

晶须是一种针状单晶体材料,其直径为零点 几至几个微米,长度为几微米至数百微米.由于 晶体结构十分完整,其具有惊人的力学强度,作为 塑料,金属和陶瓷等物质的改性添加剂,显示出极 佳的物理化学性质和优异的机械性能^[12].

自 1948年美国科学家首次发现晶须以来^[3], 迄今为止材料学家们研究开发出了上百种晶须, 有金属、氧化物 碳化物、氮化物、硼化物以及无机 盐等晶须^[4-6].在这众多种类晶须中,氧化镁 (MgO)晶须因具有优良的耐热性、绝缘性、热传 导性、补强性和很高的抗拉强度,引起人们的广泛 关注.MgO晶须的熔点为 3 123 K,其最大特点 是具有很高的强度,因此很适合作为各种复合材 料的强化或补强材料^[7-10].

MgO晶须的制备大多采用气相法^[11],虽然该 方法制备的晶须长径比高。直径分布均匀,但制备 过程需要高温和惰性气体保护,工艺过程不易控 制,生产成本高,大大限制了 MgO晶须的工业生 产与应用.近年来,溶液法因工艺过程简单,生产 成本低廉而倍受关注.本文以氯化镁(MgCb· 6HeO)和碳酸钠(NacCO3)为原料,制得前驱物, 经干燥、煅烧等工艺,得到 MgO 晶须.此外,利用 室温陈化与水热合成法分别制备碱式氯化镁与碱 式硫酸镁晶须,经干燥和煅烧同样获得 MgO 晶 须.

1 实验方法

1.1 MgO晶须的制备

配制 0.4 mol/L的 MgCl₂溶液 20 mL和 0.4 mol/L的 Na₂ CO₃ 溶液 20 mL,在搅拌状态下将 Na₂ CO₃溶液缓慢滴入 MgCb溶液中,混合均匀后 继续搅拌 15 min,然后在室温下陈化 10 h.将得 到的白色沉淀经过滤,用蒸馏水洗涤数次,在 80 $^{\circ}$ 下干燥 4 h得到前驱物水合碳酸镁.将此前驱 物在 700 $^{\circ}$ 下煅烧 2 h,控制升温速率为 5 $^{\circ}$ /min,得到 MgO晶须.

1.2 分析测试

晶体结构分析采用 X 射线粉末衍射 (XRD) 在日本 XD-3A型 X射线粉末衍射仪上进行,采用 CuKα辐射, $\lambda = 0.15418$ nm. 利用扫描电子显微 镜 (SEM, JSM -5600LV,日本)测试煅烧前后产物 的微观形态.

收稿日期: 2006-09-12; 修回日期: 2007-04-23.

基金项目:高等学校全国优秀博士学位论文作者专项资金资助项目(200322);国家自然科学基金资助项目(20471012);高等学校博士学科点专项科研基金资助项目(20040141004).

作者简介: 薛冬峰*. (1968-), 男,教授,博士生导师, E-mail, dfx u@ chem, dlut. ed u. cn. ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 结果与讨论

2.1 MgO晶须的制备

将得到的前驱物干燥后进行 XRD分析,结果 见图 1. 图中仅有 MgCO3 · 3HO 衍射峰 (与 JCPDS No. 20-669一致),无其他杂相,且具有良 好的结晶性能.前驱物为结构完整的 MgCO3 · 3HO,属单斜晶系,空间群为 P21/n,晶胞参数 a = 1.211 nm, b = 0.536 5 nm, c = 0.769 7 nm.

图 1 前驱物的 X RD谱图 Fig. 1 X RD pattern of the precursor

将干燥的 MgCO3^{··} 3 Ho 品须在 700[℃] 下煅 烧 2 h,可得到 MgO 品须. 将得到的产物进行 X RD分析,结果见图 2 X RD 谱图 与标准谱图 JCPDS No. 77-2179一致,表明其结构为 MgO 单 一物相,晶胞参数 a = 0.4211 nm.

图 3是所得前驱物的 SEM 照片. 从图 3(a)

(a) 良好分散性 MgCO3 · 3H₂O 晶须

可以看出,有大量晶须生成,晶须表面光滑,直径 分布均匀,直径在 2~ 5^µm,长度约为 60^µm.

图 2 前驱物煅烧后所得产物的 X RD谱图

Fig. 2 XRD pattern of samples obtained by calcining of precursor

在得到的产物中,有部分晶须团聚成"花 形"(图 3(b)),这种团聚现象的出现一方面是由 于晶须细化到一定程度时,具有很高的化学活性 和表面能,晶须表面处于极不稳定的状态.为了 降低表面能,晶须会通过相互聚集而达到稳定状态,从而引起部分晶须的团聚.另一方面,当晶须 以沉淀物的形式从溶液中析出时,表面原子存在 许多悬空键和不饱和键,使得晶须之间易于形成 氢键等化学上的键合,导致晶须之间互相黏附聚 集.再者,溶液中可能存在的杂质也会引起晶须 的团聚.要抑制这种团聚,以获得分散性更好的 晶须,仍需进行进一步的研究.

(b) 花形 MgCO3 · H2O 晶须

图 3 前驱物的 SEM 照片

Fig. 3 SEM images of the precursor

将干燥的前驱物晶须直接煅烧,即可得到 MgO晶须(图 4). 从图中可以看出,所得 MgO晶 须结晶良好、分散均匀,与前驱物相比形貌没有明 显改变.由此表明,通过适当控制煅烧条件,可以 在不改变形貌的情况下,将前驱物(MgCO3⁻ 3Ho)晶须转变为 MgO晶须.

以 MgCh[·] 6H_·O为原料、Na₂CO₃为沉淀剂首 ?1994-2015 China Academic Journal Electronic

可得到 先制得前驱物(MgCO

先制得前驱物 (MgCO3 · 3HO) 晶须.借助这种 前驱物,采取适当的煅烧工艺,通过控制分解条件 使之保持原来的形貌,即得到 MgO晶须.由于 MgO本身为立方晶系结构,一般条件下很难沿某 个晶面优先生长,需要在比较特殊的条件下才有 可能 (如气相法),其应用受到限制.这种通过煅 烧前驱物制备 MgO晶须的工艺,因其生产成本低

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

廉,不失为一个良好的方法.实验结果表明,前驱物的形貌是影响产物性能的主要因素之一,即不同长径比的 MgCO³¹ 3Ho 网烧后产物 MgO的长

(a) 低倍照片

径比也不同.因此要获得具有一定长径比的 MgO晶须,必须首先制得长径比大的 MgCO₃·3HO晶须.

(b) 高倍照片

图 4 前驱物煅烧后所得 MgO晶须的 SEM照片 Fig. 4 SEM images of MgO whiskers obtained by calcining the precursors

2.2 原料浓度的影响

原料浓度对前驱物形貌的影响如图 5所示, 沉淀剂的加入量按 $n(Mg^{3})$: $n(CO_{3}^{2-}) = 1$: 1 计. 当原料浓度较低时 (0.2 mol/L,图 5(a)),前 驱物为颗粒状,没有晶须形成;随着原料浓度的适 当增加 (0.4 mol/L),可以获得分散均匀、长径比 高的晶须 (图 5(b));当原料浓度进一步增加时 (0.6 mol/L),虽然仍有晶须生成,但形貌变得不 规则 (图 5(c));当原料浓度达到 0.8 mol/L时,没

(a) 0.2 mol/L

(c) 0.6 mol/L

有晶须生成,只获得大量纳米粒子(图 5(d)).因此,选择合适的反应物浓度,对产物的形貌有重要影响.如果反应物浓度过低,难以为晶须的生长提供足够的原料;而当反应物浓度较高,晶体的成核速率远大于晶体的生长速率,加入反应物的瞬间就产生大量的晶核.这些晶核来不及长大,具有很高的表面自由能,因此容易发生团聚,也得不到分散均匀的晶须.实验结果表明,适宜的反应物浓度为 0.4 mol/L

(b) 0.4 mol/L

(d) 0.8 mol/L

图 5 不同浓度原料所得前驱物的 SEM照片

Fig. 5 SEM images of the precursors by using the same raw materials with different concentration ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

沉淀法制备 MgO晶须所涉及的反应方程式 主要为

$$Mg^{2} + CO_{3}^{2} \rightarrow MgCO_{3} (aq)$$
$$MgCO_{3} (aq) \rightarrow MgCO_{3} (s)$$
$$MgCO_{3} \rightarrow MgO + CO_{2}$$

由于溶液中沉淀生成的前提条件是:溶液中 沉淀的前驱物质的浓度必须达到过饱和状态.因此,要保证 MgCO3^{··} 3HO 沉淀形成,必须保证反

应溶液中存在一定浓度的前驱物质,即足够浓度 的 Mg^{a} 和 CO_{3}^{2-} .当 $MgCl_{2}$ 与 $NacCO_{3}$ 的物质的 量比为 1:1时,符合上述反应的化学计量比,也 只有在这种配比下才获得了结晶良好的晶须(图 6(a)).原料配比的变化不仅影响反应进行的速 度,而且对溶液的 pH也有影响,进而影响了溶液 的饱和浓度.溶液的过饱和度越高,形成的晶核 数越多,就会抑制晶核的进一步长大,从而无法获 得结晶良好的晶须(图 6(b), 6(c)).

(a) n(Mg²⁺):n(CO₃²⁻) = 1:1
 (b) n(Mg²⁺):n(CO₃²⁻) = 1:1.5
 (c) n(Mg²⁺):n(CO₃²⁻) = 1:2
 图 6 采用不同原料配比所得前驱物的 SEM 照片

Fig. 6 SEM images of the precursors with the different raw materials molar ratios

2.4 煅烧温度与煅烧时间的影响

在煅烧前驱物以获得 MgO晶须的过程中,煅烧温度和煅烧时间是采用沉淀法制备 MgO晶须 比较关键的一步. 煅烧过程中,煅烧温度、升温速 度、煅烧时间等因素对于 MgO晶须的性能均有不 同程度的影响. 煅烧温度太低,不利于前驱物的 分解转化,而煅烧温度太高、时间过长,则由于分 解速度太快而破坏晶须外形,晶须团聚。直径增 大. 因而在保持沉淀物煅烧完全的同时,煅烧温 度越低、时间越短,才能得到烧结良好、分散均匀 的 MgO晶须. 图 7为将前驱物在不同温度下煅烧

图 7 在不同温度下煅烧前驱物所得产物的 X RD谱图

Fig. 7 XRD patterns of the products at different

2 h所得产物的 X RD 谱图. 从图中可以看出,在 500 ℃、600 ℃ 下煅烧前驱物均不能得到结晶良 好的纯相 M gO,只有煅烧温度达到 700 ℃ 时,前 驱物才完全转化为 M gO. 本文同时考查了煅烧 时间对前驱物转化的影响(图 8). 结果表明,在 700 ℃ 下煅烧 2 h后,才能得到纯相 MgO. 从以 上分析可以看出,最佳煅烧条件为煅烧温度 700 ℃,煅烧时间 2 h. 在此条件下可以得到结晶良好 的纯相 MgO.

- 图 8 前驱物在 700[℃] 下煅烧不同时间所得 产物的 XRD谱图
- Fig. 8 XRD patterns of the products at the calcination temperature of 700 ℃ for different time

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 碱式氯化镁和碱式硫酸镁为前驱 物的氧化镁晶须的制备

配制 2 mol/L的 Mg Cl₂溶液 10 mL和 1 mol/L的 NaO H溶液 2 mL,将 NaO H溶液缓慢滴 入 Mg Cl₂溶液中,搅拌 30 min后室温陈化 72 h, 获得碱式氯化镁晶须 (图 9(a));配制 1.5 mol/L

(a) 碱式氯化镁晶须

(c)碱式氯化镁晶须煅烧后的 MgO 晶须

MgSO₄溶液 10 mL和 4 mol/L的 NH[·] HO溶 液 10 mL,在搅拌状态下混合上述溶液,然后在 150[℃]下水热反应 15 h,获得碱式硫酸镁晶须(图 9(b)).分别在 950[℃] 下煅烧两种前驱物,获得了 高长径比的 MgO晶须(图 9(c)(d)),晶须的分 散性好、结晶度高.

(b)碱式硫酸镁晶须

(d)碱式硫酸镁晶须煅烧后的 MgO 晶须

图 9 碱式氯化镁、碱式硫酸镁和煅烧后所得 MgO 晶须的 SEM 照片 Fig. 9 SEM images of basic magnesium chloride, magnesium hydroxide sulfate hydrate and MgO whiskers by calcining the corresponding precursors

4 结 论

以 MgCh^{··} 6H_·O为原料 NæCO₃为沉淀剂, 经煅烧 MgCO₃^{··} 3H_·O前驱物,制得了结晶良好、 分散均匀的 MgO晶须.所得晶须直径在 2~ 5 μ m,长度约为 60 μ m.详细考查了原料浓度、原料 配比.煅烧温度等工艺条件对晶须形貌的影响,并 确定了最佳工艺条件:原料浓度 0.4 mol/L, MgCh 与 Na₂CO₃的物质的量比 1[:] 1,搅拌 15 min,室温陈化 10 h,获得的前驱物在 700[℃] 下煅 烧 2 h.利用煅烧碱式氯化镁、碱式硫酸镁的方法 同样获得了形貌优良的 MgO晶须.本文介绍的 MgO晶须制备工艺简单,成本低廉,易于进一步

工业放大,对于 MgO晶须的产业化具有重要的指 导意义.

参考文献:

- CAO W D, LU X P, CONRAD H. Whisker formation and the mechanism of superplastic deformation [J]. Acta Mater, 1996, 44(2): 697-706
- [2] 徐兆瑜. 晶须的研究和应用新进展 [J]. 化工技术与 开发,2005,34(2):11-17
- [3] WANGER R S, ELLIS W C. Vapor-liquid-solid mechanism of crystal growth [J]. Appl Phys Lett, 1964, 4(5): 89-90
- [4] YANG Z X, XIA Y D, MOKAYA R. High surface

MgO晶须制备工艺简单、成本低廉,易于进一步 /1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne using mesoporous silica [J]. Chem Mater, 2004, 16(20): 3877-3884

- [5] CHEN Z Z, SHI E W, ZHENG Y Q, et al. Growth of hex-pod-like Cu₂O whisker under hydrothermal conditions [J]. J Cryst Growth, 2003, 249(1-2): 294-300
- [6] XU J S, XUE D F. Chemical synthesis of BaCO₃ with a hexagonal pencil-like morphology [J]. J Phys Chem Solids, 2006, 67 1427-1431
- [7] YUAN Y S, WONG M S, WANG S S. Whisker/matrix interface and microstructure of MgO-whisker reinforced (Bi, Pb)₂ Sr₂Ca₂Cu₃O_x high-temperature superconducting composite [J]. J Mater Res, 1996, 11(1): 18-27

- [8] WANG X L, XUE D F. Direct observation of the shape evolution of MgO whiskers in a solution system [J]. Mater Lett, 2006, 60(25-26): 3160-3164
- [9] 王晓丽,薛冬峰.不同镁盐对氧化镁晶须形貌的影响
 [J]. 无机盐工业,2006,38(2):16-18
- [10] 王晓丽,薛冬峰.利用菱镁矿制备氧化镁晶须[J]. 无机盐工业,2005,37(10):16-17
- [11] SAITO H H, OKADA Y, O HSHIO S. Synthesis of MgO/ZnO hetero-epitaxial whiskers using chemical vapor deposition operated under atmospheric pressure [J]. J Mater Sci, 2002, 37(21): 4597-4602

Preparation of MgO whiskers and investigation on their influence factors

XUE Dong feng^{* 1,2}, ZOU Long jiang¹, YAN Xiao xing¹, WANG Lei¹, WANG Xiao li¹

(1.State Key Lab. of Fine Chem., Dalian Univ. of Technol., Dalian 116012, China;
2.Key Lab. for Micro Nano Technol. and Syst. of Liaoning Prov.,
Dalian Univ. of Technol., Dalian 116012, China)

Abstract To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursors. MgO whiskers were prepared via a chemical reaction between magnesium chloride and sodium carbonate followed with the heat treatment. The composition, the morphology and the structure of these whiskers were characterized by X-ray diffraction and scanning electron microscopy. The results indicate that the diameter of MgO whiskers is in the range of $2-5\mu$ m and the length is about 60μ m. The influence of various process parameters on the whiskers was investigated. Other fabrication methods have been briefly introduced from basic magnesium chloride whiskers and magnesium hydroxide sulfate hydrate whiskers. These methods, in a certain case, extend the industrial production of MgO whiskers.

Key words magnesium oxide; whiskers; influence factors