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Abstract ;: To make the theoretical analysis of the microbial continuous culture

more close to the experimental results, a ratio-dependent chemostat model

with variable yield is formulated. The model develops the classical Monod

model and assumes that the yield is a linear function of the nutrient

concentration and the microbial growth rate is a ratio-dependent type function.

Qualitative analysis is implemented on this model. It is shown that the system

is permanent if and only if it has a positive equilibrium. The sufficient

conditions of existence of limit cycles and globally asymptotic stability of the

positive equilibrium for the model are given.
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0 Introduction

The chemostat is a good laboratory

apparatus of microbial continuous culture.
Moreover, investigating microbial growth is an
especialy important problem in mathematical

A valuable

reference for this subject is the recent book by

biology and theoretical ecology.

Smith and Waltman'’, The basic deterministic

models of microbial growth in the continuous
2]

culture apparatus take the form"

js' = ("= HQ— Fp(S 0
Lx’ =x(p(S) — Q)

where S(z) and x(z) denote concentrations of

the nutrient and the microbial biomass

respectively; S° denotes the feed concentration

of the nutrient and Q is the flow volume. The

function p(S) denotes the microbial growth rate
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and an especial choice is p(S) = mS/(a + SHF,
rate”. The

stoichiometric yield coefficient & is the ratio of

it is so-called "Monod growth
microbial biomass produced to mass of nutrient
consumed. The dynamical behaviors of the basic
this basic

model (1) are simple. However,

model  requires  modification  from  the
accumulation of experimental data. Especially,
the basic model cannot explain the observed
oscillatory behavior in the chemostat™!. It can

be more reasonable that the stoichiometric yield

coefficient may be a function of nutrient
concentration. Such hypothesis was studied
theoretically in many chemical engineering
literatures™ ™, From  these  experiments,

although the clear evidence for variability of the
yield coefficient exists, its precise function form

is still unknown.

Supported by: National Natural Science Foundation of China (10471117).
Corresponding authors: SUN Shu-lin* (1974-), Male, Doc. » E-mail:sunsl_2004@yahoo. com. cn; CHEN Lan-sun(1938-), Male,

Prof. . Supervisor of Doc. .



932

47

Pilyugin and Waltman®) assumed that the
yield coefficient 6(S) is a function of the
substrate concentration S. They studied the
Hopf bifurcation of the persistence rest point and
showed that the bifurcation can be subcritical.
At the same time, the fact that only supercritical
bifurcation occurs when the yield varies linearly
with S obtained. Thus, the previously published
results in Lit. [ 5,6 ] were corrected.

Recently, there is a growing explicit
biological and physiological evidence that when
predators have to find food, a more reasonable
functional response in a predator-prey model
should be a function of the ratio of prey to
predator. This is strongly supported by many
fields  and

observations. A ratio-dependent predator-prey

laboratory  experiments  and
model, generally, takes the form!"-
x =axf(x) — ypla/y) )
Y =cygla/y) —dy
Here p(x/y) is the so-called ratio-dependent
functional response. Often, ¢(a/y) is replaced
by p(x/y), in which case ¢ is the conversion
rate.

To make the theoretical analysis of the
microbial continuous culture more close to the
experimental results, the model in Lit. [8] will
be modified in the present paper. That is, the
microbial growth rate p(S) is replaced by
p(S/x) and the growth yield coefficient 6(S)
becomes a linear function of the nutrient
concentration S. Thus, the chemostat model
takes form

uS x
(kx +8) (A + BS)

g (e 5
11 1( P Q’
where all constant coefficients are positive. The

©S
(kx +5)
microbial growth rate and the function 6(S) = A

+ BS is the yield coefficient. The objective of
this paper is to study the global stability of the

JS/ = Q" — S5 —

function p(S/x) denotes the

boundary equilibrium of the system (3) and

show that wunder the positive equilibrium

existence, the system is permanent. Finally, the
existence of limit cycles and the global stability
of the positive equilibrium are studied by the
Dulac

Poincaré-Bendixson theorem and

criterion.

1 The boundary equilibrium and

permanence

For simplicity, the system (3) is rescaled
with substitutions
S —> 8%, x> AS’x, t > 7/Q
then the system (3) takes the following simpler
form (note that s, x, t are still replaced by s,x,

t, respectively)

’s_, . asa 1

J‘ ’ bxr + s 1+ cs

4 ‘ (4
;L as

[I - x(/};rst 1

where a = p/Q, b = kA, ¢ = BS°/A.

Lemma 1 The positive quadrant 2 = {(s,
x) € R*|s > 0,2 > 0} is positively invariant
under the system (4). Moreover, the system
(4) is dissipative in £2.

Proof On the subset of a2 = {s = 0,2 >
0} the vector field is pointing strictly inside £
since s' =1 > 0 there. The line / = {x = 0,5 >
0} is invariant under the system (4); thus £
consists of positive semi-trajectories. The
positive invariance of 2 is proved.

Since any solution u(¢) = (s(¢) ,2(¢)) of the
system (4) in {2 satisfies the differential
inequality s <{ 1 — s. Thus for every solution

w(t) in 0, lirrll sups(t) << 1. In particular, there
is a7 = 0 such that s(z) << 2 forall t =T. Let
¢ = maxo(s)(s € [0,2]), where 6(s) =1 + cs,
let 2(¢) = s(@) + x2(t)/q, then

asx 1 1 asx x

_/)IJrsl+cs g

[— N
=1 q bx + s q<

1—.s—§:1—z<z),t>'1‘
Therefore
lim supx () << lim supqz(z) < ¢

)

It follows that the system (4) is dissipative in

0. [
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Theorem 1 The system (4) always has a
boundary equilibrium E, = (1,0). When a <1,
the equilibrium E, is a hyperbolically stable
node. When a = 1, the equilibrium E, is a
saddle-node. When a > 1, the equilibrium E,is a
hyperbolically saddle. Moreover, if a < 1, the
equilibrium E, is globally asymptotically stable
in 0.

Proof Obviously, the point E, = (1,0) is
an equilibrium of the system (4). Consider the
Jacobian matrix J(E,) of the system (4) at the
equilibrium (1,0), which takes the form of

a
J(E,) = 1t
0 a—1
It is easy to see that the eigenvalues of the
matrix J(E,) are 4, =— 1 and 4, = a — 1.

Consequently, when a << 1, the equilibrium E, is
a hyperbolically stable node. When @ = 1, the
equilibrium E,is a saddle-node. When a > 1, the
equilibrium E, is a hyperbolically saddle.
Suppose that a < 1, then the boundary
equilibrium E; is a unique equilibrium of the
system (4). It follows that no solution u(z) =
(s(),2(t)) of the system (4) in £ can have its
w-limit set different from E,, since otherwise,
the Poincaré-Bendixson theorem would imply the
existence of a positive equilibrium. Together
with Lemma 1 and the above-mentioned result,
the globally asymptotic stability of the
equilibrium E, in 2 1is proved. []
Theorem 2 When a > 1, the system (4)
has a unique positive equilibrium E* = (s" ,2")
in 2. Moreover, when a > 1, the system (4) is
permanent in {2.
Proof By

straightforward computation,

a—1
b
of s* determines the sign of x*, thus it is

€ (0,1). After some

“
x =

s is obtained. When a > 1, the sign

sufficient to prove s*
computation, it can be seen that s* is one of
roots of the equation

=D —G—=D_ 1

——=0

— 2
f(s) =35 be .

Because

ﬂm:—%«anﬂD:“;]>ow>n

Thus, the sign of two roots of the equation f(s)

= 0 is reverse and there must be a unique

positive root in (0,1). The positive root is

denoted by s* € (0,1) and s* =
A ;[;c+ 46_6, where ¢ £ bh(c — 1) — (a —

1). It follows that when a > 1, the existence
and uniqueness of the positive equilibrium E* are
proved completely.

It is easy to see that, for the system (4)

. . asx _a_ _ . atb
s >1—5 bx—l—s>1 S bs—l A S
which implies that lim infs(z) > b £ .
t—>+co a + /) -
Hence, for large ¢, s(z) > s/2, and
! x’7a£/2 — 1‘
— a4+ 5/2

It follows that
1‘[(a — s — 21)1‘]
2bx + s
which yields that for ¢ > 1, lim Virnfx(t) =

x =

2b o

It follows, together with the dissipativity of

x.

the system (4), that the system (4) is

permanent in (2. ]

2 The

positive

local stability of the
equilibrium and the

existence of limit cycles

In this section, the existence of limit cycles
of the system (4) in 2 will be discussed. It is
known that the system (4) has a unique
equilibrium E” in 2 when a > 1. Hence, in the
rest of this section, it is assumed that the
positive equilibrium always exists in 2, that is a
> 1. In the following, the local stability of the
equilibrium E* = (s" ,a2") is studied.

Consider the Jacobian matrix J(E*) of the
system (4) at the equilibrium (s*,2”), which
takes the form of

JE ) =
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ar” (ba* —c(s¥)?) a(s*)?

T £ +¢5%)? T 5201 +57)

ab(z")* _abstx”
(br™ +57)° (br™ +57)°
(5)
By substituting +* = 4 ; s* into the system
(5), and straightforward computation, it
follows that
det(J(E™)) =
717(a*1)[(a*1)‘*1‘«v*] B 1
ab(1 +¢s™)? a(l+es™)
(@ — 1) a1 |
ab a
S e
Hence, E* cannot be a saddle. Thus, the

local stability of E* is completely determined by
the trace of J(E").

tr(J(E")) = —1— [ax" (bxa" — c(s")?) +
abs 2" (1 + s )]/ [ (bt +
s F s =—1— {(a —

D6A + es™H? — (1 + es™) +
al}/[abQ + cs* )] A& F

The above arguments imply that

Theorem 3 When « > 1, the positive
equilibrium E* is locally asymptotical stable for
F* < 0; E” is unstable for F* > 0; if F* = 0,
then E* is a nonhyperbolic equilibrium.

Recall that the system (4) is permanent
when a > 1. However, the positive equilibrium
E* is unstable when F* > 0. It follows that
there could be the limit cycles in .

Theorem 4 When a > 1 and F* > 0, the
system (4) has at least one stable limit cycle in
0 which surrounds E*.

Proof To prove the existence of limit cycle
using the Poincaré-Bendixson theorem, first of
all, an invariant set D which contains E* needs
to be constructed.

D is the region which consists of the

positive s-axis, the positive x-axis and the lines

l; s =1, mx = d/;}ls + 1. The points of

intersection on the (s,x)-plane are 0(0,0),
a+b—1)

b b
respectively., Hence the region D is the part
which is surrounded by the curve OABCO,

obviously, D C .

AC0,1), Bl 1, C1,0

Next, the tendency of the flow of the
system (4) on the boundary of D is discussed.
From the positive invariability of 2, it is
sufficient to analyze the tendency of the flow on
the lines / and m. On the segment AB Cm, x2’

bx ' _
= bx +s < 0, the flow is tending to the

interior of D. Similarly, the flow is tending to

the interior of D on the segment BC C/ for s’ =

1 ax

1 Hcbr+1

enters into the interior of D at some time cannot

<C0. Thus, any trajectory which

escape from D as time. But when F* >0, the
positive equilibrium E* is unstable. Hence, it
follows from the Poincaré-Bendixson theorem
that the system (4) has at least one stable limit
cycle in D, Theorem 4 is proved. []

Corollary 1 If @ > 1, then all positive
solutions of the system (4) are ultimately
bounded.
3 The

positive equilibrium

global stability of the

Firstly, assume a >>1 in this section, that is
to guarantee the existence of the positive
equilibrium E*. The globally asymptotic
stability of the positive equilibrium E* is proved
by Dulac criterion together with Corollary 1 and
the locally asymptotic stability of E*.

Theorem 5 When ¢ > 1 and F* < 0, the
positive equilibrium E” is globally
asymptotically stable in  if any one of the
following conditions holds ;

(D be+1)<<land 2bc —b—c+1>0;

(2)be —2b+2<<0and 26c — b —c +1<<

Proof Choose a suitable Dulac function in
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D. Obviously, D is a simply connected region.
The Dulac function takes the form

B(s,x) = (1 —s) ot

Set
Plsa) =1 — 5 — asx 1
o ’ bx + s 1+ cs
[ as ‘
Q(s,x) = I([).T i 1
By straightforward computation, it follows that
WD) HBD e 4+ 01+ o) —
s(1 —s)( +esH)(1 — b —
bes) 1 <— TS ()
where
A= (bx+ )1 +csH( —s)
f(s) = — be?s® + (be? — 2bc + 2¢)s* + (2bc —
b—c+ 1)s+0b
If f(s)>01is true for some conditions, it implies
that under these conditions 3([;]’ + Q(I;IQ) <0

is always tenable in D, It follows from the Dluac
criterion and the proof of Theorem 4 that there
cannot exist any closed trajectories in D. Thus,
together with Corollary 1 and the locally
stability of E*, the

asymptotic globally

asymptotic  stability of E* is obtained
immediately. Therefore, the next objective is to
find the sufficient conditions which guarantee
fs) > 0.

Note that s € [0,1], it follows from
straightforward computation that the derivatives

of f(s) and their values at the end points are as

follows .
JO)=b>0, f(A)=1+c>0
(f1(s) =— 3bc’s® + 2(bc? — 2bc +
20)s + (2bc — b — ¢ + 1)
3 6)

}f/(()) = 2bc —b—c+ 1
(1) =—bc* — 2bc + 3¢ — b+ 1

(f"(s) =— 6bc’s + 2(bc*> — 2bc + 2¢)
1 S0 = 2¢(be — 2b 4 2) (7
[f”(l) = 4c[1 — blc + 1]

S (s) =— 6bc* <0 8

From Eq. (8), f”(s) is monotonically decreasing
in [0,1], which implies that f"(0) > f"(s) >
S"(1). Thus, the following cases are got.

Case 1 When f”(1) > 0, it implies that
f"(s) is monotonically increasing in [0,1],
which implies that /" (0) < f"(s) << f"(1).

Case 1.1 When f'(0) > 0, it implies that
f(s) is monotonically increasing in [0,1], which
implies that f(s) > f(0) = 6> 0. Thus, under
these conditions, f(s) > 01is true in [0,1].
1 < o, by
observation, it is contrary to /(1) > 0.

(6) and (7),
when b(c+1)<<1and 2bc —b—c+1>0, f(s)
is always positive in [0,1].

Case 2 When f"(0) << 0, it implies that

Case 1.2 When

Consequently, from Eqgs.

f"(s) is monotonically decreasing in [0,1],
which implies that " (0) > f"(s) > f (D).

Case 2.1 When f'(0) << 0, it implies that
f(s) is monotonically decreasing in [0,1],
which implies that f(s) > f(1) =1 + ¢ > 0.
Thus, under these conditions, f(s) > 0 is right
in [0,1].

Case 2.2 When /(1) > 0, by
observation, it is contrary to f”(0) < 0.

(6) and (7),
when bc — 20+ 2<<0and 2bc —b —c+1<0,
f(s) is always positive in [0,1].

Consequently, from Eqgs.

Thus, the proof of Theorem 5 is finished.
L]

4 Conclusion

In this paper, the ratio-dependent

chemostat model with variable yield is
considered. The results of the permanence of the
system and the existence of limit cycles are
obtained, these results are interesting. The
analysis of the globally asymptotic stability of
the positive equilibrium of this model is more
difficult for the microbial growth rate of the

ratio-dependent type and the variable yield.
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However, the microbial growth rate of the 14(3):601-622
microbial continuous culture models in the [3] MONOD J. Recherches sur la Croissance des

previous literatures is mostly Monod type, say,

p(S) = , thus, the analysis of the global

©S
E+ S
stability of the positive equilibrium is easy. On
the other hand, the yield of some microbial
continuous culture models is a constant, it can
reduce the models. But, the ratio-dependent
chemostat model with variable yield is more
realistic and interesting, therefore, it is very

the

significant to further consider
ratio-dependent chemostat model with variable

yield in the future.
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