文章编号:1000-8608(2009)01-0048-07

天然气再燃过程与排放特性数值研究

毕明树*,贾艳艳,李 芳

(大连理工大学化工学院,辽宁大连 116012)

摘要:应用 CFD 计算软件 FLUENT6.1,对煤粉炉天然气再燃烧过程进行了数值模拟.分析 了不同再燃烧工况下,NO_x、CO₂、CO 等污染物的排放量及飞灰含碳量与煤粉炉热效率之间 的关系.结果表明,天然气再燃技术能够有效地降低 NO_x 的排放量,且燃料燃烧充分,煤粉炉 热效率较高.给出了在保证煤粉炉较高热效率前提下,有效降低 NO_x 排放的天然气再燃量、 天然气投射位置以及再燃烧区过量空气系数.NO_x 排放浓度的计算值与试验值的变化趋势 基本保持一致,表明计算方法可用于工程实际.对现有锅炉进行一定的结构改造,通过天然气 再燃可达到高效降低 NO_x 排放的目的.

关键词:热能动力工程;天然气;再燃;NO_x脱除;数值模拟 **中图分类号:**TK121 **文献标志码:**A

0 引 言

煤作为世界上大量消费的一次能源,其利用 方式主要是燃烧,但已造成了严重的大气污染,燃 烧排放的污染物主要有 NO_x、二氧化碳、固体粒 子(包括未燃烧和部分燃烧)等,其中 NO, 在大气 中的含量,从19世纪50年代起至少增加了3倍. 在各种降低 NO_a 排放的技术中,燃料再燃技术是 最为行之有效的方法之一[1~5]. 天然气因为其本 身不含氮、灰和硫,因此不会加重 NO, 的排放水 平,也不会产生腐蚀性化合物,且能比其他燃料产 生更多的烃根,故被认为是最理想、最广泛使用的 再燃燃料^[6]. 通过揭示天然气再燃过程 NO₂ 的生 成和控制机理,研究工艺参数的最优配置是当前亟 待解决的问题.虽然国内外对此进行了不少的实验 与计算研究^[7~11],但多将重点集中在 NO, 脱除率 上,对于锅炉热效率和燃烧效率的研究少有报道. 本文在全面分析煤粉炉天然气再燃烧的燃烧特点 基础上,借助计算软件 FLUENT6.1 对煤粉炉的 天然气再燃过程进行数值模拟,考察再燃量、再燃 燃料投射位置(再燃燃料喷口距主燃料喷口的距 离)及再燃区过量空气系数对出口烟气温度及 NO_x 、 CO_2 与CO的排放,飞灰含碳量 w(UBC)以

及炉膛中心温度沿炉膛长度分布的影响.

1 数学模型及数值方法

1.1 数学模型

煤粉在炉膛内燃烧是一个复杂的过程,涉及 气相流动和湍流燃烧、颗粒运动、挥发分析出、焦 炭燃烧、辐射换热^[12,13]等.各模型的建立极大地 影响着数值计算的结果.

气相的湍流流动采用标准 k-ε 方程模型,微分 方程为

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho u_i k) = \frac{\partial}{\partial x_i} \Big[\Big(\mu + \frac{\mu_t}{\sigma_k} \Big) \frac{\partial k}{\partial x_i} \Big] + G_k + G_b - \rho \varepsilon - Y_M + S_k$$
$$\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_i}(\rho u_i \varepsilon) = \frac{\partial}{\partial x_i} \Big[\Big(\mu + \frac{\mu_t}{\sigma_\varepsilon} \Big) \frac{\partial \varepsilon}{\partial x_i} \Big] + C_{1\varepsilon} \frac{\varepsilon}{k} (G_k + C_{3\varepsilon} G_b) - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k} + S_{\varepsilon}$$

收稿日期: 2007-01-10; 修回日期: 2008-11-13.

作者简介:毕明树*(1962-),男,教授,博士生导师.

49

 $S_{\varepsilon} = S_k = 0.$

气相湍流燃烧使用双混合分数概率密度函数 (PDF)模型,选取β-PDF.天然气以二次流、非经 验流形式注入.这一模型的优点是,可以预测中间 成分,而且不需要求解全部的组分输运方程,只需 求解混合分数,然后根据混合分数再从PrePDF 软件生成的查询表中查询各组分.双混合分数 PDF模型与单混合分数 PDF模型相比,PDF 的 积分是在 FLUENT 中进行的,因此它对计算机 有更高的要求,而且计算时间也较长,但是相应地 其计算精度也要高于单混合分数 PDF 模型.并且 本文所研究的燃烧系统含有两种不同组成的燃料 流和一种氧化剂流,因此双混合分数 PDF 模型才 是有效的.

煤粉颗粒相流动采用随机轨道方法,计算中 追踪了 10×10 个(取 10 个直径,每个直径取 10 个)粒子.

挥发分析出模型为双竞争反应热解模型. 1977 年 Kobayashi 等提出了用两个平行竞争的 一级反应来描述热解过程,即

以上两个反应中的反应速率系数 k_1 、 k_2 服从 Arrhenius 定律:

 $k_n = k_{0n} \exp(-E/RT_p); n = 1,2$

这一模型的特点是认为,存在着两个反应活 化能 E_1 、 E_2 和两个反应频率因子 k_{01} 、 k_{02} ,且 $E_2 > E_1$, $k_{02} > k_{01}$.这样,在低温时第一个反应起主要 作用,高温时则第二个反应起主要作用,在中等温 度时,两个反应均起主要作用.这就解决了单方程 热解模型只适用于等温过程的限制,它可应用于 较广的温度范围,这是一个很大的改进.其中 α_1 、 α_2 、 E_1 、 E_2 、 k_{01} 、 k_{02} 均为实验系数.本文的计算煤 种为烟煤,试验表明对于烟煤的挥发分析出过程 各试验参数取以下各值比较合理^[14]:

$$\begin{split} E_1 &= 104.6 \text{ kJ/mol}, \ E_2 &= 167.4 \text{ kJ/mol}, \\ k_{01} &= 2 \times 10^5 \text{ s}^{-1}, \ k_{02} &= 1.3 \times 10^7 \text{ s}^{-1}, \\ \alpha_1 &= 0.3, \ \alpha_2 &= 1.0 \end{split}$$

焦炭燃烧采用动力 / 扩散控制燃烧模型. 此

模型假定炭的表面反应速率由动力学速率或扩散 速率确定.此模型假设颗粒大小不变,密度减小. 其扩散速率方程为

$$D_{\scriptscriptstyle 0} = C_{\scriptscriptstyle 1} \, \frac{\left[\left(T_{\scriptscriptstyle \rm p} - T_{\scriptscriptstyle \infty} \right) / 2 \right]^{0.75}}{d_{\scriptscriptstyle \rm p}}$$

化学(动力学)反应速率常数为

$$R_0 = C_2 \exp(-E/RT_p)$$

根据二者不同的加权值得到焦炭的燃烧速率为

$$\frac{\mathrm{d}m_{\mathrm{p}}}{\mathrm{d}t} = -\pi d_{\mathrm{p}}^{2} p_{\mathrm{ox}} \frac{D_{\mathrm{o}} R_{\mathrm{o}}}{D_{\mathrm{o}} + R_{\mathrm{o}}}$$

用 P-1 辐射模型计算辐射传热.

在煤粉炉中生成的 NO_x 中,主要是 NO,约 占 95%,而 NO₂ 仅占 5%左右,并且是由 NO 氧 化而来,N₂O 等的量极少,因此本文只考虑 NO 的生成,即文中 NO_x 仅指 NO. NO_x 的生成为 3 部分:热力型、快速型和燃料型.本计算中对 NO_x 的生成采用后处理的方法.热力型 NO_x 采用 extended Zeldovich 机理计算.利用 DeSoete 给出 的通用动力学参数对快速型 NO_x 进行计算.对于 燃料型 NO_x,计算中认为煤粉颗粒中的氮均匀分 布于挥发分和焦炭中,即在两者中浓度相同.采用 图 1 的反应机理:燃料 N 首先转化为中间产物 HCN,然后部分 HCN 转化为 NO^[15].湍流对 NO_x 生成的影响采用温度和氧浓度的 β 型概率 密度函数来模拟.

Fig. 1 NO $_x$ formation mechanisms

1.2 数值计算方法

用结构化四边形网格对二维计算区域进行离 散,采用有限容积法来离散微分方程,使用二阶迎 风格式,压力速度耦合采用 SIMPLE 算法.在直 角坐标系下的交错网格系统中求解.采用 TDMA 法求解代数方程组.

入口条件按进口均匀分布取值,给出各进口

气固两相的流速、质量流量和温度.进口处湍流动 能 k 取为进口处平均动能的 3%,进口处湍流动 能耗散率按进口处的 k 值和进口特征长度计算. 出口条件按压力出口条件取值,壁面边界条件取 无滑移条件,对于流体近壁区域采用壁面函数法.

2 模拟对象及网格划分

2.1 模拟对象

本文所计算的煤粉炉炉膛结构如图 2 所示 (单位为 mm).炉膛长 10 m,宽 1.0 m,煤粉与空 气的速度比取 0.3.煤粉炉为对称结构,有一个供 煤粉和一次风射入的喷嘴(直流)、两个二次风进 气口、两个天然气再燃燃料进气口以及两个燃尽 风进气口.其中煤粉入口与天然气入口之间的区 域为主燃烧区也称一级燃烧区;天然气入口与燃 尽风入口之间的区域为再燃区也称二级燃烧区; 燃尽风入口至煤粉炉出口区域为燃尽区也称三级 燃烧区.主燃料为烟煤,煤质分析结果见表 1,煤 粉的主要物性参数见表 2,再燃燃料是体积分数 为 CH_4 96%和 C_2H_6 4%的天然气,炉膛计算参数 见表 3.

Fig. 2 The schematic diagram of coal-powder furnace and calculation mesh

表1 煤质分析结果

Tab. 1 The results of the coal-quality analysis

工业分析/%			元素分析/%				$oldsymbol{Q}_{ ext{daf,net}}/$	
$FC_{\rm d}$	$A_{ m d}$	$V_{\rm d}$	С	Н	0	S	Ν	$(MJ \cdot kg^{-1})$
64	8	28	89.3	5.0	3.4	0.6	1.7	35.3

表 2 煤样的物性参数

Tal	b. 2	Physical	parameters	ot	the	coal
-----	------	----------	------------	----	-----	------

密度/(kg・m °) 比れ	恐容/(J・kg ⁻¹ ・K ⁻¹)	导热系数/(W・m ⁻¹ ・K ⁻¹)	扩散系数/(m ² ・s ⁻¹)	膨胀系数	发射率	散射率
1 300	1 000	0.045 4	0.000 5	2	0.9	0.6

表 3 炉膛计算参数

Tab. 3 Furnace parameters

参数	数值	参数	数值
煤粉温度/℃	27	煤粉速度/(m・s ⁻¹)	15
一次风温度/℃	350	-次风风速/(m・s ⁻¹)	50
二次风温度/℃	350	二次风风速/(m•s ⁻¹)	15
燃尽风温度/℃	350	燃尽风风速/(m・s ⁻¹)	25
天然气进气温度/℃	50	天然气进气速度/(m・s ⁻¹)	25
壁面温度/℃	927	煤粉颗粒平均粒径/μm	90

2.2 网格独立性分析

煤粉炉网格划分采用了结构化四边形网格, 网格划分后的几何模型如图 2 所示. 在煤粉的质 量流量为 0.08 kg/s,再燃量 $R_{\rm ff}$ (再燃天然气燃烧 产生的发热量占总发热量的比值)为 20%,一级 燃烧区长度 $L_1 = 6$ m,再燃区长度 $L_2 = 2$ m,燃尽 区长度 $L_3 = 2$ m,总的过量空气系数为 1.1,一级 燃烧区过量空气系数为 1.1,再燃区过量空气系 数为 0.8 的工况下,计算了不同网格密度下的温 度分布. 从图 3 不同网格密度中心线温度分布曲 线图可以看出,当网格节点达到 22 011 时中心线 温度分布曲线就趋于稳定了,说明此时得到的数 值解具有网格独立性.因此,本文拟采用网格节点 为 22 011 时的网格划分方法划分模型,此时既能 满足计算精度要求,也可节省大量的计算时间和 计算机资源.

3 计算结果与分析

下文所述飞灰含碳量 w(UBC)为未燃碳质 量占飞灰质量的百分比. NO_x 脱氮率 η 由下式定 义:

$$\eta = \frac{\rho_{\text{ini}}(\text{NO}_x) - \rho_{\text{reb}}(\text{NO}_x)}{\rho_{\text{ini}}(\text{NO}_x)} \times 100 \,\%$$

式中 $\rho_{ini}(NO_x)$ 为无再燃常规燃烧下的 NO_x 排放浓度值, $\rho_{reb}(NO_x)$ 为天然气再燃工况下的 NO_x 排放浓度值.

3.1 数值计算的有效性考核

利用上述数学模型和数值计算方法对文献 [11]中所述物理问题进行描述,并与试验数据进 行比较,结果见图 4. 从图中可以看出,在改变天 然气占总燃料配比的情况下,NO_x 出口浓度的计 算值与试验值的变化趋势基本保持一致,说明数 学模型与数值计算方法有效,其计算结果具有工 程应用价值.

图 4 数值结果与试验结果的对比

3.2 再燃量对燃烧过程的影响

在总燃料发热量不变,再燃区长度 $L_2 = 2$ m, 燃尽区长度 $L_3 = 2$ m,总的过量空气系数为 1.1, 一级燃烧区过量空气系数为 1.1,再燃区过量空 气系数为 0.8 的情况下,改变天然气发热量占总 燃料发热量的百分比,分别取 0、10%、20%、 30%、40%.在上述参数下,计算出口烟气平均温 度,NO_x、CO、CO₂ 排放的平均值以及 w(UBC), 并给出炉膛中心温度沿炉膛长度的分布,探讨不 同再燃量对燃烧过程的影响,结果如图 5 与图 6 所示.

从图 5 可以看出,随着再燃量的增大,NO_x

排放浓度单调减小,NO_x 脱除率单调增大,变化 幅度逐渐减小.由于再燃量的增大,有较多的 CHi 基团与 NO_x 反应生成 N₂,有效降低了 NO_x 的排 放量;另外,天然气本身基本不含氮元素,其在总 燃料中所占的比例越大,总的燃料中含氮量就越 少,燃烧产生的燃料型 NO_x 量就越少,又因为燃 料型 NO_x 在煤粉炉产生的总的 NO_x 中所占份额 很高,因此最后生成的 NO_x 量会降低.当再燃量进 一步增大时,由于一级燃烧区内生成的 NO_x 已经 大部分被还原,NO_x 的降低幅度变得不明显.

- 图 5 NO_x 排放浓度、NO_x 脱除率、CO 与 CO₂ 体积分数、w(UBC)及温度在出口处随再燃量的变化
- Fig. 5 The influences of reburning fuel fraction on $\rho(NO_x)$, η , $\varphi(CO)$, $\varphi(CO_2)$, w(UBC) in the outlet

- 图 6 不同再燃量下炉膛中心温度沿炉膛长 度变化
- Fig. 6 The furnace centre temperature distribution along the length with different reburning fuel fractions

燃料再燃使部分燃料从主燃区分离出来在炉 膛中部的再燃区二次燃烧,使炉膛中心温度沿着 炉膛长度变化的曲线在再燃区出现第二个峰值 (如图 6 所示). 燃料再燃还减少了燃料在炉膛的 停留时间,推迟了燃料的燃尽,使炉膛出口烟气温 度增高,并增加了飞灰含碳量.由于天然气有较好 的燃尽性,当再燃量控制在 10%~20%时,不但 可以大幅度降低 NO_x 的排放量,使 NO_x 脱除率 最高可达到 87.6%,而且炉膛内高温区域增大 (如图 6 所示),出口烟气温升较小,w(UBC)在一 个很小的值 0.63%以下,整个炉膛燃烧情况较 好,燃烧效率较高.由于炉膛内高温区域增大,控 制得当可以提高煤粉炉的热效率.

3.3 再燃燃料投射位置对燃烧过程的影响

在总燃料发热量不变,天然气发热量占总燃 料发热量 20%,总的过量空气系数为1.1,一级燃 烧区过量空气系数为 1.1,再燃区过量空气系数 为 0.8,燃尽区长度 $L_3 = 2$ m 的情况下,改变再燃 燃料喷口距主燃料喷口的距离,即一级燃烧区长 度 L_1 分别取 3、4、5、6、7、8 m.由于燃尽风进气口 固定,那么对应的再燃区长度 L_2 分别为 5、4、3、 2、1、0 m.在上述参数下,计算出口烟气平均温 度,NO_x、CO、CO₂ 排放的平均值以及w(UBC), 并给出炉膛中心温度沿炉膛长度的分布,探讨不 同再燃燃料投射位置对燃烧过程的影响,结果如 图 7 与图 8 所示.

从图 7 中可以看出,NO, 排放浓度随再燃燃 料喷口距主燃料喷口距离的增大先减小后增大, 存在一个最佳再燃燃料投射位置($L_1 = 6$ m).如 果再燃燃料喷口离主燃料喷口太近,主燃烧区空 间缩短,会造成主燃料燃烧不充分,主燃烧区较多 的剩余氧量进入再燃区,削弱了再燃区的还原性 气氛,致使 NO, 被还原效果减弱;但当再燃燃料 喷口离主燃料喷口太远,由于燃尽风进气口固定, 离燃尽风喷口就会太近,即主燃烧区空间过长,再 燃区空间过短,再燃燃料远离炉膛局部高温区,并 且固定氮类化合物(NH₃、HCN、NO、焦炭氮)在 还原区停留的时间缩短,一方面较低的温度不利 于 NO, 的还原反应,另一方面烟气在氧化性气氛 中的停留时间增加,使 NO_x 的生成量增加,再一 方面由于固定氮类化合物在还原区停留的时间缩 短,NO,还原反应不够充分,也增加了 NO, 的生 成量.

Fig. 7 The influences of L_1 on $\rho(NO_x)$, η , $\varphi(CO)$, $\varphi(CO_2)$, w(UBC) and temperature in the outlet

图 8 不同 L₁ 下炉膛中心温度沿着炉膛长度变化

再燃燃料喷口距主燃料喷口距离的增大,会 缩短天然气在炉膛的停留时间,导致不完全燃烧 产物 CO 的排放量和 UBC 的增加.虽然再燃燃料 喷口距主燃料喷口距离的减小会带来燃烧效率的 大幅度提高而使炉膛内高温区显著增大(如图 8 所示),增加煤粉炉的热效率,但综合考虑 NO_x 脱 除率,再燃燃料喷口距主燃料喷口的距离即一级 燃烧区长度 L₁ 为 5.0~6.0 m,再燃区长度 L₂ 为 2.0~3.0 m 时,较为合适.

3.4 再燃区过量空气系数对燃烧过程的影响

在总燃料发热量不变,天然气发热量占总燃料发热量 20%,再燃区长度 $L_2 = 2 \text{ m}$,燃尽区长 度 $L_3 = 2 \text{ m}$,总的过量空气系数为 1.1,一级燃烧

区过量空气系数为 1.1 的情况下,改变再燃区过 量空气系数 SR_2 ,分别取 0.5、0.6、0.7、0.8、0.9、 1.0、1.1.在上述参数下,计算出口烟气平均温度, NO_x 、CO、CO₂ 排放的平均值以及w(UBC),并给 出炉膛中心温度沿炉膛长度的分布,探讨不同再 燃区过量空气系数对燃烧过程的影响,结果如图 9 与图 10 所示.

 φ (CO), φ (CO₂), w (UBC) and temperature in the outlet

图 10 不同 SR₂ 下炉膛中心温度沿着炉膛 长度变化

Fig. 10 The furnace centre temperature distribution along the length with different SR_2

从图 9 可以看出,NO_x 排放浓度随再燃区过 量空气系数 SR₂ 的增大而增大.这是由于再燃区 空气量的增加,增加了再燃区内的氧气量,不利于 NO_x 的还原,导致 NO_x 的排放量增大.再燃区过 量空气系数 SR₂ 的减小会导致燃料在再燃区燃烧 不充分,使飞灰含碳量增加.在本例中,w(UBC)的 变化幅度较小,炉膛出口烟气温度与 CO、CO₂ 排 放量变化不大,炉膛中心温度沿炉膛长度的分布 变化亦不大(如图 10 所示),这主要是由于天然气 良好的燃尽性和燃尽风的射入,使燃料燃烧完全, 保证了炉膛整体的放热率.综合考虑以上各因素, 再燃区过量空气系数控制在 0.8~0.9 时,燃烧效 果较好.

4 结 论

(1)本文采用 FLUENT 软件选用适当的模型对煤粉炉天然气再燃烧过程进行了数值模拟, 计算结果与试验结果吻合,表明了所用数学物理 模型和几何结构模型的合理性.其计算结果具有 工程应用价值.

(2) 对影响 NO_x 排放因素进行了分析,得到 了再燃量、再燃燃料投射位置和再燃区过量空气 系数与 NO_x 排放的关系.随着再燃量的增加 NO_x 的排放浓度减小;NO_x 排放浓度随再燃燃料 喷口距主燃料喷口距离的增大先减小后增大,存 在一个最佳再燃燃料投射位置 L₁=6 m;在再燃 区过量空气系数逐渐增大的过程中,NO_x 的排放 量逐渐增大.

(3)天然气再燃烧能显著降低 NO_x 的排放 量,并且炉膛的热效率较高,燃料燃烧充分.本计 算中,当再燃量在 $10\% \sim 20\%$,再燃燃料喷口距 主燃料喷口的距离即一级燃烧区长度 L_1 为 5.0 $\sim 6.0 \text{ m}$,再燃区长度 L_2 为 2.0 $\sim 3.0 \text{ m}$,再燃区 过量空气系数 SR_2 为 0.8 ~ 0.9 时,综合燃烧效 果较好.

参考文献:

- [1] SMOOT L D, HILL S C, XU H. NO_x control through reburning [J]. Progress in Energy and Combustion Science, 1998, 24(5):385-408
- [2] TREE D R, CLARK A W. Advanced reburning measurements of temperature and species in a pulverized coal flame [J]. Fuel, 2000, 79(13): 1687-1695
- [3] WASEEM A N, ROBERT E J, JACOB A P, et al. Detailed measurements in a pulverized coal flame with natural gas reburning [J]. Fuel, 1999, 78(6): 689-699

- [4] MACAHEY S, MCMULLAN J T, WILLIAMS B
 C. Techno-economic analysis of NO_x reduction technologies in p. f. boilers [J]. Fuel, 1999, 78(14):1771-1778
- [5] HAN Dong-hee, MUNGAL M G, ZAMANSKY V
 M. Prediction of NO_x control by basic and advanced gas reburning using the two-stage Lagrangian model
 [J]. Combustion and Flame, 1999, 119(4):483-493
- [6] 张 强,刘艳华,许晋源. 再燃烧技术中燃料的选取 原则[J]. 工业炉, 2000, **21**(3):9-10
- [7] MALY P M, ZAMANSKY V M. Alternative fuel reburning [J]. Fuel, 1999, 78(3):327-334
- [8] SHEN Bo-xiong, YAO Qiang. Kinetic model for natural gas reburning [J]. Fuel Processing Technology, 2004, 85:1301-1315
- [9] SU S, XIANG J, SUN L, *et al.* Numerical simulation of nitric oxide destruction by gaseous fuel

reburning in a single-burner furnace [J]. Proceedings of the Combustion Institute, 2007, **31**(2):2795-2803

- [10] 张忠孝,姚向东,乌晓江,等. 气体再燃低 NO_x 排放 特性试验研究 [J]. 中国电机工程学报, 2005, **15**(9):99-102
- [11] 刘汉周. 天然气再燃降低 NO_x 排放的试验研究与数 值模拟[D]. 重庆:重庆大学,2006
- [12] 岑可法,姚 强,骆仲决,等. 燃烧理论与污染控制: 1版[M]. 北京:机械工业出版社, 2004:410-450
- [13] HILL S C, SMOOT L D. Modeling of nitrogen oxides formation and destruction in combustion systems [J]. Progress in Energy and Combustion Science, 2000, 26(4):417-458
- [14] 傅维镳. 煤燃烧理论及其宏观通用规律[M]. 北京: 清华大学出版社,2003:13-17
- [15] Fluent Inc. FLUENT User's Guide Version 6.1 [M]. Lebanon: FLUENT Inc, 2003

Numerical study of process and emissions characteristics of natural gas reburning

BI Ming-shu^{*}, JIA Yan-yan, LI Fang

(School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China)

Abstract: The numerical simulation with CFD software FLUENT6.1 on natural gas reburning in coal-powder furnace was conducted to study the relationship between pollutants (NO_x , CO_2 and CO) emissions, unburned carbon in fly ash (UBC) and heat efficiency of coal-powder furnace. The results indicate that natural gas reburning can effectively reduce NO_x emission while keeping fuel fully burning and high heat efficiency. The optimum range of natural gas fraction, injection location of reburning fuel and stoichiometric ratio in rich zone are proposed. The computational results are in good agreement with the experimental ones, which indicates that the numerical calculation method has practical value of application in engineering. It is suggested that through a certain extent reconstruction to boilers, the gas reburning technology can reach a low level of NO_x emission.

Key words: thermal power engineering; natural gas; reburning; NO_x reduction; numerical simulation