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Abstract: The issue of robustly exponential stability for a class of uncertain

multiple time-varying delay systems with controller failures and nonlinear

perturbations is considered. A switched uncertain multi-delay system model is

utilized to describe the considered systems. A switching approach based on the

average dwell time is employed for the switched system. A delay-dependent sufficient

condition for robustly exponential stability of the switched system is established in

terms of linear matrix inequalities by using the switching method. It is proved

theoretically that the resulting closed-loop system is robustly exponentially

stable even if controller failures are encountered. The effectiveness of the

proposed method is also demonstrated by simulation example.
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0 Introduction

In some practical systems, it is frequently
met to stabilize an open-loop unstable system.
The controller inevitably fails over some time
intervals due to some known or unpredictive
cases. Therefore, the controller failure problem
is expected to be a more important topic. In Lit.
[1], a methodology for the design of state
feedback control is presented so that the closed-
loop system remains stable even when some
parts of the controllers fail. In Lit. [2], using a
two-channel decentralized controller configuration,
necessary and sufficient conditions are obtained
for the existence of reliable controllers that

maintain stability under possible failure of either

Received by: 2008-02-13; Revised by: 2010-06-20.

of the two controllers for linear MIMO plants.
According to the complete breakdown of the
control signal (u(#) =0), some results on linear
time-invariant systems have been obtained based
on the average dwell time method in Lit. [3,4].
But the papers mentioned above did not discuss
the effect of delay.

Time-delays and perturbations are often
encountered in practical control systems. Both of
them are generally regarded as main sources of
instability and poor performance of a control
system. Considerable attention has been paid to the
stability analysis and the controller design of the

[5-8]

time-delay system Very recently, the time-

delay systems have been extended to the switched

[9-15]

systems In most of these papers, all
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subsystems are either stable or unstable. Cases are
frequently encountered where unstable subsystems
have to be dealt with in some practice control
systems, as is described in Lit. [16,17]. In Lit.
[18], a class of discrete constant time-delay
switched systems with controller failure is
considered by using average dwell time technique.
However, no results are now available for such
complex switched uncertain multi-time delay
systems resulting from controller failures.

In this paper, robustly exponential stability
analysis for a class of uncertain systems with
multiple time-varying delays and both structure
uncertainties and nonlinear perturbations is
developed, whose controller fails from time to
time due to physical or purposeful cases. The
uncertain multi-time delay system subjected to
controller failure is firstly modeled as a switched
uncertain multi-time delay system including an
unstable subsystem. By using the average dwell
time approach combined with the integral
inequality, under the conditions that the total
activation time ratio of unstable subsystems to
stable ones is upper bounded., with the help of
the lemmas and a special piecewise Lyapunov
function, a delay-dependent sufficient condition for
exponential stability of the switched system is
derived in terms of linear matrix inequalities.
Finally, the

effectiveness of the proposed

method is demonstrated by simulation example.

1 Problem

preliminaries

formulation and

Consider the following uncertain linear
system with multiple time-varying delays and

nonlinear perturbations

(D) = (A+ MM + D) (AL +
i=1

A x(t— (D) + [, x()) +

Dlgi(tax(t—1,())) + Bu (1),
i=1

x() =), t € [—17,0] D
where x() € R" is the state vector and u(t) € R”
is the control input; A, Aj(i=1,2,++,m) and B
are constant matrices of appropriate dimensions;
the uncertainties AA(z) and AAL () (i=1,2,-,

m ) are some perturbations with appropriate
dimensions, and have the following forms:
(AA(H) AAY()) = DF()(E E)D;
1= 1,2,,m
with FT (¢) F(t) <<I, where D, E and E; are
known constant matrices with appropriate
dimensions. The functions f(z,x(¢)) and g, (¢,
x(—7, (1)) (i=1,2, -
nonlinear uncertainties. It is assumed that f(z,
0)=0, g;(t,00=00:=1,2,+-,m) and
Tf<ax"x@®

glg, <bix"(t— 7, ())x(x—1,(1)

, m) are unknown

(2)

where, for simplicity, f:f(t.x()), g;:g:(t.x(t
_T,'(t>))9fi (t) (Z: 172’ b

varying delay of the system, and satisfy one of

,m) are the time-

the following conditions:
(HD 0<r,(O<t,» (1) <p; with t;>>0;
(H2) 0<r, (1)<t; with 7,>>0.
@ (t) is a continuous initial function on

[—7,0] with ¢ = max {r;}. Throughout this

1<i<m
paper, it is assumed that: (1) A is unstable;
(2) (A, B)is stabilizable; (3) a state feedback
controller u(z) =Kx (z) has been designed such
that A,=A + BK is stable. When the controller
works, System (1) is expressed as follows:

() = A (Dx(D) + DA DOx(t—7,()) +

i=1

FCax@) + D g (taxt— 7. (D)),
i=1

x() =), t € [—1,0] (3)
where A, (1) =A,+AA(2), AL () =Ai+AA (D).
When the controller fails completely, System

(1) is rewritten as

(D) = AWx(D) + D A Dx(t—7,(1) +
i=1

Fax(O) + D g (tax(t—1,(0)),
i=1

x(t) =), t € [—7,0] D
Where A (t) = A + AA (¢). Then, the entire
system dynamics can be expressed as a switched
system composed of an unstable subsystem and a
stable subsystem. The form is expressed as

(D) = A, (DX + D AN DX —1,()) +

i=1

Fax(O) + D g (tax(t—1,(0)),
i=1
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x() =), t € [—17,0] (5

Where (1) : [0, +o2)>P={1.2}, A, (D) =A, (1),

A, (1) =A(t). 6(t) =1 means the controller
works; o(#) =2 means the controller fails.

The objective of this paper is to design a

class of switching laws under which System (5)

stable. To

some definitions and lemmas are

is exponentially formulate the
problem,
introduced.
Definition 101
and each T=¢r=0, let N, (T,t) denote the
number of switching of ¢ over the interval (¢,

. I

For each switching law o

T—1

a

N, (T,t) < s V7o, >0 (6)

7, is called the average dwell time.
Definition 2 System (5) is said to be
exponentially stable if there exist scalars A>>0,
k>1 such that for all x (z) the following
inequality holds:
x| <«llx, ae™, Ye=1 (D

where | x, || 4:= sup {(IxG+D |, || G+
—r==0<0

D+, || « |l is the Euclidean norm.

Lemma 1% For any constant symmetric
matrix W>>0, scalar t>>0, and vector function
Xx(C+):[—17,0]>R" such that the following

integral is well defined, then

— J ET(OW ¥ ()ds < 27 (1) [W sz(z)
—c w —Ww

€))

x"G—o)".

Let D, F, E and M be real
matrices of appropriate dimensions with M satisfying
M=M", then for all F"F<I, the fact that M+
DFE+ E"F'D" <0 holds if and only if there

exists >0 such that M+ 'DD"4+eETE<0.

where z(2) = (x" (1)

Lemma 202"

2 Main results

Due to System (3), the matrix A, =A -+ BK
is stable, so a scalar A~ >0 can be obtained such
that A, +A I is stable.

Lemma 3 Under (H1), for given a=>0, b,
>0, A~ >0 and for allowable upper bounds z,>
0, if there exist positive symmetric matrices P, ,

Q;, R; and positive scalars €;, ¢, 71 (i =1, 2,

-, m) such that the following linear matrix
inequality holds
{l +81A H%Z {'3 il

1 1 1 1
12 22 23 24

I3 IL, I, 3
1 1 1
14 24 34 14
where
¢}1 12 ¢%3 ‘e ¢%m+]
¢12 ¢§Z ¢%3 ... ¢é/u+1
il - ¢}° 4’;% ¢é% cee ¢ém+l

1
P i1

¢%m+l ¢%m+1 ¢§m+1
with
¢, =P, A, +2 D+ AU, +2 D'P, +
EQ} — irTlRie’Z“f +ed’l,
P P
¢, = PLAI + 7 'Rie ™ 71 yeee, @l =
PAY +7,/Re ™ o,
¢ = — [ —p)Qie™ 1 +
7 'Rie * 7 ]+ ibil,
b= LA —)Qhe o
o 'Rie ™ 2 |+ pbil, -,
= — [0 —pm)Qhe ™ =+
o,/ Ry e ? |+ il
¢;3 — ees — ¢%m+1 — ¢1;4 — ees — ¢ém+l — eee —

1
¢m+ Tm+1

Gt = Prr it = Ppnis = V(V is a zero
matrix of appropriate dimension) ,
P, P, - P P, D
m— | T Y m |
0o 0 - 0 0
0 RID
o N
0 R.D

ITi; = (A Al - AD' (R - R},

I, = U - DT(R} - R,,),

II;, =— diag {e,L.p I, ,y0},

II;;, =—diag {«;'R}.--,7,'R), }, IT}, =—O,1,
A= (EE, - E,)'"(EE, -+ E,)
Then, along the trajectory of System (3),

it results in the following equation:

Vi) <e™ TV (1) 1o
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Proof Choose the

functional candidate

Lyapunov-Krasovskii

t (xT(s) X

t—7. (1)
i

V() = x"(OP,x() + ZJ

i=1

Qle “Ox(s)ds+

v .
EJ j X" (HR? 0 2(5)dsdd
. J 0

i=1v "%
(1D)
Then along the trajectory of System (3) and by
Lemma 1 together with Eq. (2), it leads to

V() 20 V() < (O (D)
where
II, (1) =
1 (H{Em I, -
A () = (A (1) AY(t) =« A7 () IT +- D

By Schur complements and LLemma 2, from Eq.

Hl (t) 11'12 N m
! ) J+Af<z>2f,.R}Al<z>,
i=1

(9) it is easy to see that IT, (£)<<0. Thus V, (¢)
+217V, (1)<20.
Integrating  the

above inequality, it

obviously holds that

Vi) <e® “0V (1) a2
When the controller fails, System (1)
reduces to System (4). As is well known,
matrix A is unstable. There exists a constant A~
>0 such that A—2A" I is stable. The following
resuls may be obtained.
Under (H1), for given a >0,
b:>0, AT >0 and for allowable upper bounds

7;,>>0, if there exist positive symmetric matrices

Lemma 4

P,, Q7 R} and positive scalars e,, 8, 7 (i=1,
2,++,m) such that the following linear matrix
inequality holds
IT, +6,A i, II; II,
Ir;, I, 1Ir, IT,

omom om0 Y
IT;, I, I, IT;,

where
¢§1 ?2 ?3 ?erl
¢%z ¢§2 4’5% ¢§m+l

fl = fa ¢§e 4’2%5 ¢§m+l

¢§m+1 ¢§mﬂ ¢§m+1 ¢§,—1m+1

with

¢ =P, (A—A"D+A—A"D'P, +

ZQ? — 2?1 Re ™ % +e,a’1,
i=1 i=1

¢%2 = PzAgl + TTlR% eizﬁrl ’

= P,A b Rie P e
¢in'l = Pz T + T;lR;Zn 672/1‘ iy
¢ = —[(1—p)Qie™ o o' Rie™ ] 4

1;?(7%19

¢ = — [0 — Qe =+, Rie ™ =]+
77§ /)%I, cee

= [ —)Q%e ® w4

o R e ™ o ]+ bl

2
¢m+lm+l

¢ ==l =P == ==
(I’yzn—lm - ¢§,71m+1 - ¢;an+1 =V,
P, P, p, P,D
‘ 0 0 - 0 0
Hfz - . . ’ 11?4 - . ’
0 0 0
0 RiD
) 0 ) R:D
2 = . II;, = . s
0 R:D
I, = (A A} AR} R)),
I, = (I D" (R} R.),

I}, =— diag {e, L.y I,y I},
5 =—diag {7/'Rl,--,7,'R.}, I}, =— 8,1
then, along the trajectory of System (4), it has
V() < e 0V, () (14
Proof Similar to Lemma 3, choose the

Lyapunov-Krasovskii functional candidate

t

V.() = x"(OP,x(1) + ZJ (x"()Q? X
=1 Y
0 x(s)ds + ZJ J (7 (s) ¥
i=1 Y Yl
R?e* “ 0 x%(5))dsdd (15)
From the proof of Lemma 3, one can get
Vo () < e 0V, (1) (16)

In the following section, the stability
condition of switched System (5) is given based
on the above two Lemmas. First, a class of
switching laws is designed.

Let T, and T, be the total activation time of
the system (when the controller fails) and the
system (when the controller works) during time

interval [ #,, t], respectively, and choose a
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scalar A" € (A,A7 ). For YA€ (0,1 ), consider (9), (13) and Lemmas 3, 4, it leads to
a class of switching laws satisfying the following V() =V, () =V, (1) <
6] S .
two conditions™'™ ; e V(). j =1 (22
/\+ A oAt .
(S) i Igf == Aiw VA AV (1), =2

where A7 >>0 and A~ >>0 are to be chosen later.

_ _Ingp
Dn=n =330

Then, the following theorem can be obtained.

Consider switched Systems (5)
satisfying (H1), for given « >0, b; >0 and
allowable upper bounds z; > 0, if there exist

Theorem 1

positive symmetric matrices P;, I, Rl and
1,2) (i=
1,2, -, m) such that the following linear matrix

inequalities (9) and (13) hold, then, the System

positive scalars A=, A7, &, 8;, 7/ (j=

(5) is robustly exponentially stable for any
switching signal satisfying the conditions (S) and
(T). Moreover, the state of System (5) is given by

x| <k lx, o AD

where
<Py ERf ZR

iU{f <#iUf, Vjk€P,i=1,2,.m
i=1 i=1

= 1 satisfies P,

(18)
x In p v
—ar oy, Y
A=A 27, k min A i, (P;) =1
viep
with
Y = maxAnm(P )+ rmax/\m ZRJ
i=1
z max/l,mXZUf (19

2 viep
Amin( ° )9 Amax( *

maximum eigenvalues of a symmetric matrix,

) denote the minimum and

respectively.
Proof Choose the
Lyapunov-Krasovskii functional candidate
V(i) =V,, @) 20
where V,(¢) and V, (¢) are designed in Eqs. (11)
and (15).
From Egs. (18) and (19), it is obvious that
Vi <pV. (), Vj.kE P @D
For t>0, let t, <<g <<--<y, =1Nm0 ,

following piecewise

denote

the switching points of ¢ over the interval (¢,,1). By

using the differential theory and combining Egs.

It follows from Conditions (S), (T), Egs.
(21) and (22) that
V) < Vi (1) P Tl =20 TG0 <
e2h Ty 022 'l'suk.f)#va“;) (£, ) <+ K
pNetto? ezﬁTuuk ,r)ﬁff\(rk.r)vmo) (1,) =
Q2 T, (028 Ti(lk.1)+Na(l().1)ln/xva(ro) (1) <

t—t
22" (T 4T )+—In
e uoos Ta n'lvf,(,o) ([0) <

o _Ing
e 2 (4 B ) [O)V(,(,O) (1) <

e 2 r“>Vﬂ(,D) (t()) (23)
From the definition of Lyapunov function
together with Eq. (23), the I[following

inequalities hold

mln Aoin (P | x() |2 < V(D)

4 240

It follows from

Va(%) (to \ 7 H x’o
Where 7 is given in Eq. (19).
Eqgs. (23) and (24) that

lxo || < #(P) e x4
viep
Therefore
[x@ | <ke o lx, | O
Remark 1 It is obvious to see that there

exist some parameters in Theorem 1. Here some
parameters, for example, scalars a>0 and b, >
0, are given in advance; some parameters, such
as positive scalars A~ and A", are chosen with
transcendental method; the upper bounds of
time-delays z; are obtained through the following
method by giving proper choice ;.

(H2), by

(9) and (13),

If the delay only satisfies
choosing Q7 = 0 in Eqgs.
Corollary 1 is obtained.

Corollary 1 Under (H2), for some given
conditions in Theorem 1, if the following linear
matrix inequalities (9) and (13) with Q7" =0
hold, System (5) is robustly exponentially
stable for any switching signals satisfying the
Conditions (S) and (T).

Remark 2 If j =1 in Corollary 1, the
system is non-switched uncertain system with
nonlinear

multiple time-varying delays and
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perturbations. So Corollary 1 contains the

existing results in Lit. [8] as a special case.
3 Numerical example

In this section, an example is used to
illustrate the effectiveness of the proposed
approach.

Example 1  Consider the dynamic systems
with multiple time-varying delays and both
nonlinear

structure uncertainties and

perturbations in Systems (1), (2), Conditions

. 01 0
(H1) and (H2) withA = [1 1], B = (1],

0.3 0.2 (0.2 0.1
Al = and A} = ; the
0.2 0.3 0.1 0.3

controller is u = Kx with K = (—2.398 6
—4.459 3), then A, A + BK =

0 1
;s M=0.01I, N=0. 2I,
—3.3986 —3.459 3

Ni{=0.3I, Ni=0.1I, a=0.1, 6, =0.03, b, =
0. 04. It is obvious to see that A is unstable and
A, is stable. By using Theorem 1, choose A7 =
3, A7 =0.4, A" =0.1, A=0. 05 and p=1. 053,
stable.  The

allowable upper bound of delays is obtained for

System (5) is exponentially
different p; and py 5 7,5 7,<20. 347 0 for pu, = p, =
O, Ty s T2<O. 279 8 fOr j231 :/lg :O. 5’ Ty T2<
0.278 5 for py = p, = 0. 9. The average dwell

L e Anp

time is computed as z, T =0 0.516 4,
N . T, -

and the switching laws require Tb 2/17, ii =

10. 333 3. Moreover, due to 7, , 7,<<0. 278 5 for
1 =p2=0.9, the state of System (5) is given by
| x() | <5.566 1“0 || x, |

The state trajectory of the system during all

cle

over operation is shown in Fig. 1 in which the
two subsystems are activated over time periods
0.3 and 3.1 respectively, where the initial
1007,

From Fig. 1, it can be seen that the system

condition is x,=(—5

dynamics via switching are convergent quickly
under the Conditions (S) and (T).
By Corollary 1, hy, h,<C0. 275 is obtained if

the derivative of delay is unknown.

20

—x(f)
154 - x(0)
10r

(3,
T

15

Fig. 1 The state response curves based on switching method
4 Conclusion

In this paper, robustly exponential stability
analysis of switched uncertain multi-time delay
systems is studied. Based on an average dwell time
technique combined with linear matrix inequalities,
it is shown that under a class of switching laws
where the average dwell time is sufficiently large and
the total activation time of the unstable subsystem is
relatively small compared with that of the stable
one, the switched uncertain systems with
multiple time delays are robustly exponentially
stable. Moreover, the derivative of the time-
delay may allow to be any large or even
unknown. At last, an example illustrates the

effectiveness of the proposed method.
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