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Introduction

Three-dimensional particles generation algorithm

LIU Jun®, GENG Qing-dong

Abstract: Particles generation is the pre-step of discrete element simulation of
practical problems. One advancing front face (AFF) algorithm for three-
dimensional sphere/polyhedron particles packing is advanced. It can be used to
constructively generate a random initial packing of spheres / polyhedrons with
different radii within a 3D domain. Firstly, select three radii randomly and
generate three spheres which contact with each other. The centroids of the
initial three spheres form two advancing front faces. Then, select an AFF as
the active face, randomly select a radius and generate a new sphere which
contacts with the three old spheres forming the current active AFF. Update
AFF list, select a new active AFF and generate a new sphere until all needed
spheres have been generated or the domain has been filled in. If polyhedron
particles are required, vertices are generated randomly on the sphere surface
and these points are connected to form a convex hull. Go through all spheres
and polyhedron particles are formed and filled in the 3D domain. The generated
packing is not a globally optimal arrangement, but a locally highest density is
achieved from the algorithmic point of view. The performance of the algorithm
is illustrated by several examples. The major benefit of this algorithm is the
significant reduction of CPU time required for the preparation of an initial
discrete object configuration in discrete element method (DEM) /discontinuous
deformation analysis (DDA) simulations. It is demonstrated that it takes only
86 s for the proposed algorithm to generate 50 thousand particles on a PC with

one 2.8 GHz processor.
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The discrete element method (DEM) /
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particularly for engineering problems involving

Typical

examples include process simulation (e. g.

discontinuous deformation analysis ( DDA ), )
granular assembly, powder compaction

and

coupled with the finite element technique, has

become a powerful numerical approach,
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particle dynamics) and fracture damage modeling

(e. g. cohesive f{rictional materials, rock
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blasting, mining applications and high speed
projectile impact). Using simplified geometric
entities, such as circular disks/spheres, to
model discrete objects has been demonstrated to
provide an acceptable approximation to many

“J. The pre-step in

complex physical phenomena
the discrete element simulation of practical
problems often requires the generation of
discrete objects packed in a form which can
represent various realistic situations. Particle
packing/arrangement has been one of the most
attractive research fields in recent years.

In the case of equal size objects and regular
containers, the initial packing of spheres may be
implemented by regular arrangement. In many
practical situations, however, different size spheres
have to be used in the simulation. Preparation of
an initial distribution of a large number
(sometimes, it is up to millions) of such spheres
in a realistic (random) manner is not trivial.

Currently, many approaches have been used
in general practice. Several of these approaches
are briefly reviewed in the following P,

The first approach is random generation.
The particles are sequentially generated by
determining their central locations randomly.
When the newly generated particle conflicts or
overlaps with the existing ones, they are then
rejected or removed to a suitable position.
However, with the increase of generated
particles number, the times of rejections or

So the

disadvantage of this approach is the time

movement also increase significantly.

consumption of the whole procedure. Another
disadvantage is that the predefined particle size
distribution may not be achieved due to the
rejection of many particles.

The second approach adopts a two-stage
procedure. In the first stage, all spheres are
assumed to have a maximum radius with their
center being placed in a regular style. While for
many particles, the actual radii are smaller.
There are usually relatively large gaps between

the spheres. In the second stage, the spheres are

compressed to reduce some gaps by pushing the
boundaries toward the spheres in one or several
directions.

In the third approach, a hopper is used to
mix different sizes of spheres together. The
spheres are initially packed regularly in layers at
the top of the hopper, and the spheres with
larger radii are placed above. Under the action of
gravity, the spheres fall through the chute and
settle down with a random mixture of different sizes
of spheres in the container beneath the hopper.

As to the first approach, many spheres are
not getting in touch with some of the others.
This reduces the density of the sample. Both the
compression of the boundary and the movement
of spheres under gravity force in the latter two
above are normally

approaches mentioned

simulated by the same numerical procedure
employed in the DEM / DDA. Real forces are
involved in the packing procedure for these
approaches. However, the CPU time required to
undertake this pre-processing phase can be time-
consuming.

Han,

compression algorithm of randomly filling a

021 also

et al. suggested  a
domain with spheres of different sizes. The
algorithm is a two-step procedure. Firstly,

spheres of different radii are randomly
distributed or regularly positioned to create an
initial packing within a geometric domain, and
the initial packing is compressed to a much
denser condition. Secondly, the remaining space
in the first step is refilled. If successful, it
compresses the spheres by using the technique in
the first step and repeats the procedure until the

131 proposed  to

domain is full. Cui, eral.
generate small balls of a given number firstly,
and then made the balls to grow larger and
larger by increasing their radii. The process will
stop when the domain is fully filled. At last,
with the compression of the boundary and the
action of the gravity, the balls will fall, roll and

come to a stable and dense condition. This

particle generation algorithm is widely used in
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the particle flow code (PFC).

“J proposed an advancing

Feng, etal.
front-based algorithm to constructively generate
a random initial packing for disks with different
radii within a 2D domain. Lit. [14] extended
the methodology to other shaped discrete objects
including elliptic particles and convex polygons,
and as well to 3D spheres with different sizes.
But the details of the algorithm in 3D particles
generation aren’ t presented in his paper, and
there is no detailed solutions presented for the
situation, in which some spheres may penetrate
through  the facets  without necessarily
overlapping existing spheres.

In this paper, a random filling approach,
termed advancing front face (AFF) algorithm, is
presented in a 3D domain based on Feng' s
ideology in detail to reduce the CPU time
required for the preparation of an initial discrete

object configuration in DEM / DDA simulations.
1 Spheres generation

Firstly, select three random radii and
generate three spheres which contact with each
other. The centroids of the initial three spheres
form two AFFs. Then select an AFF as the
current active face, select a random radius and
generate a new sphere which contacts with the
three spheres forming the current active AFF.
Update AFF list, select a new active AFF and
generate a new sphere until all needed spheres
have been generated or the domain has been
filled in. If polyhedron particles are required,
vertices are generated randomly on the sphere
surface and these points are connected to form a
convex hull. Go through all spheres and
polyhedron particles are formed and filled in the
domain.
1.1 The first three spheres and initial front faces
The first three spheres, denoted as B,, B,
and B;, can be generated to have the densest
packing by being contact with each other in the

center of the domain as shown in Fig. 1.

Firstly, select randomly a radius and locate the

first sphere (B,;) at the center of the domain.
Then, randomly select a radius and put the
second sphere (B,) to contact with the first one.
Lastly, randomly select a radius as the radius of
the third one and put it to contact with the
A plane (B, B;B;) is
formed by connecting their centers together, and
two faces (B, B;B; and B;B;B,) of the plane are

obtained. The two faces are defined to have

existing two spheres.

directions, with B;—~>B,—>B, or B; >B, —>B, as
positive. And the oriented faces B;B;B, and
B,B,B; are termed the initial advancing front
faces and recorded in front faces list. The region
surrounded by faces is considered to be or have
been occupied by spheres. The defined directions
of the faces ensure that any new sphere should
be placed on the outward normal side when

traveling along the front faces.
@%

Fig. 1 The first three spheres

With the initial front faces established, new
spheres can be generated to fill the space by
incrementally advancing the front face until the
original domain has been nearly full-filled or the
needed spheres have been generated. Details of
the generation of a new sphere and the updating
of the current active front faces are described
below.

1.2 New sphere generation and front faces update

Starting from the two initial faces, one
face, e. g. B, B,B; is chosen as the current active
face (CAF). At first, randomly select a radius
and generate sphere B,, which is in contact with
B;, B, and B; and lies in the outward normal
direction of the face B, B,B;, as shown in Fig. 2.
After B, is generated, the current active face
B, B, B, is deleted from the front faces list and
three new front faces B,B,B,, B,B;B, and
B;B,B, are added to the front faces list. Now
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there are four front faces available in the list.
Then, the last front face (e. g. B;B,B,, which is
the last one in the front faces list) is chosen as
the current face to generate new sphere, and
then, a new sphere B; is generated in a similar
manner. The current active face is deleted from
the list and another three new [ront faces are
then added to the list. The number of front faces

in the list is increased to six.

Fig. 2 Generation of the fourth sphere

The above procedure will be performed until
the whole domain is filled in or all the particles
are used up. In general cases, new generated
sphere may partly locate out of the domain or
overlap with the existing spheres in the domain.
Several measures are therefore taken to deal with
these problems. Now the algorithm of the
spheres generation is proposed as below.

(a) Generate the first three spheres and
form the front face list.

(b) Select a front face as the current active
face and select randomly a radius as the radius of
the new generated sphere. Determine the central
coordinates of the new sphere B;, which is in
contact with the three spheres (B,, B, and B.)
on the current active face. This is a simple
geometric problem. As shown in Eq. (1), (x,
v, z, 1) are the center coordinates and radius of
the new ball and (z;, y;» z:» ) (:=1,2,3) are
the center coordinates and radius of the three
balls on the active front face. Three unknown
variables of the central coordinate of the new
sphere can be solved through Eq. (1). Two sets
of solutions are obtained. One is located in the
inside of the face and the other one is located in
its outside. The latter one needed as the inside

has been filled by the existing balls. If the center

point is located in the outside of the face, the
determinant in Eq. (2) should be greater than
zero. Illustration is shown in Fig. 3.

(x—a))+ (y—y)i+(z—z)) = Gr+r)?
(x—2)" +F (v =)+ (x—2)" = (r+ry)?
(x—a2)" + (y— v+ (z—2)% = (r+ry)?

(D
1 X1 V1 21
1 x vy, =z
T U= (2)
1 X3 y3 z3
1 Xy Vi Zy
B,
B, B.
Bc

Fig. 3 Generation of the ith sphere

(c¢) Check if the new sphere, B;, is located
in the outside of the domain or overlaps with the
existing spheres. If any of these two conditions
appears for the new sphere with the selected
radius, it is then changed to a relatively smaller
radius. This process continues until a suitable
sphere is found, which means there is no
overlapping and outside locating. If all the given
radii are tried and failed in the above process,
which means, based on the current active face,
even the smallest sphere can not be filled into
the domain. The space here is then treated as
too small to be filled, and the current active face
is then deleted from the face list. This
phenomenon happens when the current active
face reaches the boundary.

(d) If all the front faces are used or all the
needed particles are generated, the filling
process is finished.

The spheres generation procedure in a
container introduced above can be described by
the flow chart in Fig. 4.

The following features can be derived from
the above algorithm: A locally optimal packing is

achieved when adding a new sphere since it is in
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contact with the three spheres associated with
the current active face. As intermediate active
faces are only temporarily presented and
removed after new spheres are successfully
generated, the available current faces always
form a closed polyhedron (may be concave), and
leave no gap between spheres on the current
active face. The region inside the front faces

represents the sphere-filled domain and any new

sphere is placed outside the region.

| Generate the first three balls |

Face list or balls
used up?

I Choose current face I

Choose a radius randomly %@

| Solve the coordinates of the new ball

<—| Update front faces list

Fig. 4 Flow chart of spheres generation

2 Further issues

2.1 Face visit sequence

Theoretically, the faces on the front can be
visited in any order but a logical way of choosing
an active face will benefit. Here the new
generated front face, which has the largest face
list number, is chosen. First, it will be easy for
programming. Second, it will benefit the domain
filling on the behalf of filling density.
2.2 Further tightening

As the current algorithm can achieve only a
local optimal packing, the spheres may be
further packed by means of gravity compaction
and boundary compression. This further
tightening may also be able to eliminate local
instability of some spheres.
2.3 Extension to other domain shapes

The algorithm is discussed on the basis of a

cuboids domain to be filled. It can be easily

extended to other domain shapes, such as
sphere, cylinder or even more complex geometric
shapes. What it needs to do is just to adjust the
boundary conditions.
2.4 Disadvantage

The disadvantage of this algorithm is that
relatively large gaps may appear near the
boundary. In order to avoid this disadvantage,
small radius group should be supplied to fill in

this space.

3 Generation of polyhedron in

sphere particle

After the
polyhedrons are needed, a polyhedron with all

generation of spheres, if
vertices on the sphere surface can be generated
in each sphere. In order to assure that the
volume of the polyhedron in a sphere is not too
small in contrast to the sphere, several distance
conditions are defined. The procedure of the
polyhedron’s generation is introduced as follows:
(a) The vertex number (N) of a polyhedron
is determined randomly, which should not be
smaller than four so as to form a polyhedron.
(b) The first vertex of the polyhedron is
randomly located on the sphere surface.
(¢) The second vertex is located randomly
but it should be not too close to the first one.
(d) The third vertex is located randomly
but it should be not too close to the former two
points and not too close to the line connecting
the former two vertices.

(e) The

randomly, and is kept far enough from the

fourth vertex is determined
former three vertices and the plane formed by
the former three vertices. If within many loops
(e. g. 500 iterations), the fourth vertex can not
be obtained, then the location of the fourth
vertex is directly determined with the largest
distance to the plane of the former three
vertices.

(f) The following vertices are randomly

generated one by one, which should be with a

distance limit to the formers.
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(g) All the vertices on the sphere surface
form a convex hull that is the polyhedron.

Steps (a) to (g) are repeated until all
spheres have been changed to polyhedrons.

The chart of the polyhedron’s generation

algorithm is shown in Fig. 5.

I Give the ball number i l

<Ei=n>N
Y,
| Give the vertex number }N randomly |

| Locate the first three vertices randomly |

| Generate the fourth vertex randomly

| i++ |<—| Form a convex hull |

Fig. 5 Flow chart of a polyhedron generation

4 Examples

There are four examples to illustrate the
validity of the algorithm. The first container is a
cube with the side length of 10 cm. This sample
has four fractional groups, and their diameters
are 2.0 cm, 1.0 cm, 0.6 cm and 0.4 cm. The
results of spheres generation and polyhedrons
generation are shown in Fig. 6. In the second
example, the container is a cylinder, whose
height and diameter are 20 cm and 10 cm
respectively. Also four fractional groups are
used as above mentioned. The results are shown
in Fig. 7. In the third example, it is a cuboid
container. The side length of the bottom square
is 10 cm, and the height of the container is 20

cm. In order to have a denser simulation, ten

considered. And the

minimum and the maximum diameter are 0.5 cm

fractional groups are

and 5.0 cm respectively. The results of
generated spheres and polyhedrons are shown in
Fig. 8. The fourth example is shown in Fig. 9.
The container is more complicated than the
previous three examples. Only one diameter is

set to generate spheres.

Yf{»X
(b) Polyhedrons ?

Fig. 6 Particles generation in a cube

»

(a) Spheres (b) Polyhedons

Fig. 7 Particles generation in a cylinder

(b) Polyhedrons

(a) Spheres

Fig. 8 Particles generation in a cuboid
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Fig. 9 Particles generation in a complicated container

This paper also gives a comparison between

the practical gradation and the simulated
gradation. The container is a cube with the side
length of 30 cm. The simulation result of the
particles is shown in Fig. 10, and the sieving
data of the material is listed in Tab. 1. From the
Tab. 1, two coefficients of the sample can be
calculated, and they are the coefficient of
uniformity C, and the coefficient of curvature
C.. C,=5.29, which is larger than 5, and C.=
1. 32, which is between 1. 0 and 3. 0. So the
sample is uniformly and well graded. The
gradation comparison between the practical and

simulated samples is plotted out in Fig. 11. It is

shown that the two curves meet well.

Fig. 10 Particles generation simulation result

Tab.1 Result comparison

Percent finer f

D / cm

Practical Simulated
<0.1 0.002 4 0.003 8
<0.2 0.031 2 0.057 2
<0.5 0.192 7 0.243 8
<1.0 0.316 5 0.438 1
<15 0.398 4 0.570 8
<2.0 0.614 3 0.723 6
<3.0 0.846 8 0.801 3
<4.0 0.917 9 0.896 0
<5.0 0.979 0 0.974 6
<7.0 1.000 0 1.000 0

100 -
-e-practical
80 -» simulated
< 60 [
~ 401
2r
O 1 T04

D/cm
Fig. 11 Comparisons between practical and

simulated samples

5 Conclusion

In this work, a new algorithm, called
advancing front face algorithm, for spheres and
polyhedrons generation is advanced. Although
the generated packing is not a global optimal
arrangement, it has achieved a locally highest
density from the algorithmic point of view and
should be sufficient to represent a practical
situation, as illustrated in the examples
presented.

The performance of the algorithm and the
final spheres distribution may be further
improved by taking several additional issues into
consideration in implementation as discussed.
Additional compression and compaction can be
applied to further tightening the packing if a
higher density is required in practice. Actually in
many cases the initial stage of DEM / DDA
computation can act as a means of further
tightening.

The major benefit of this algorithm is the
significant reduction of the CPU time required
for the preparation of an initial discrete object
configuration in DEM / DDA simulations. It is
demonstrated that it takes only 86 s for the
advanced algorithm to generate 50 thousand
spheres on a PC with one 2. 8 GHz processor,
while using a hopper to mix spheres may take a

few days to achieve the same goal.

References:

[1] CUNDALL P A, STRACK O D L. A discrete

numerical model for granular assemblies [ ] ].



%2

LIU Jun, et al:

Three-dimensional particles generation algorithm

243

(2]

[3

]

(4]

[6

[

]

[

Geotechnique, 1979, 29(1):47-65

SHI G H. Discontinuous deformation analysis:a new
numerical model for the statics and dynamics of block
systems [ D ]. Berkeley: Department of Civil
Engineering, University of California at Berkeley,

1988

LIU Jun. Three-dimensional discontinuous
deformation analysis coupled with finite element
method [ D ]. Dalian: Dalian University of

Technology, 2001
FENG Y T, HAN K, OWEN D R J. Filling domains
with disks: [J].

International Methods

an advancing f{ront approach

Journal for Numerical in
Engineering, 2003, 56:699-713

VISSCHER W M, BOLSTERLI M. Random packing
of equal and wunequal spheres
1973, 239:504-507

ANISHCHIK S V, MEDVEDEV N N. Three

in two and three

dimensions [J]. Nature,

dimensional apollonian packing as a model for dense
granular systems [J].
75:4314-4317

DU Cheng-bin, SUN Li-guo. Numerical simulation of

Physical Review Letters, 1995,

concrete aggregates with arbitrary shapes and its
application [J]. Shuili Xuebao, 2006, 37(6):662-673

(in Chinese)

(8]

[9]

[10]

[11]

[13]

CHAN S K, NG K M. Geometrical characteristics of

the pore space in a random packing of equal spheres

[J]. Powder Technology, 1988, 54:147-155
COELHO D, THOVERT J F, ADLER P M.
Geometrical and transport properties of random

packings of spheres and aspherical particles [ ] ].
Physical Review, 1997, E55:1959-1978

SOBOLEV K, AMIRJANOV A. The development
of a simulation model of the dense packing of large
particulate assemblies [ ] ]. Powder
2004, 141:155-160

STOYAN D. Models of random systems of non-

Technology,

intersecting spheres [ C] // Proceedings of Prague
Stochastics’98. Prague:JCMF, 1998:543-547
HAN K, FENG Y T, OWEN D R J.
packing with a based
Powder Technology, 2005, 155:33-41

SULLIVAN C.

Sphere
geometric compression
algorithm [J].
cur L, o

Analysis of a

triangulation based approach for specimen generation
for discrete element simulations [ J]. Granular
Matter, 2003, 5(3):135-145

FENG Y T, HAN K, OWEN D R J. An advancing
front packing of polygons, ellipses and spheres [C]
// 3rd International Conference on Discrete Element

Methods. New Mexico: ASCE, 2002:93-98

=Y BORE e 34

x1]

(KFEE I KF¥ #RME

TR . Bk A R R AT HOR R 40 LB AR LB AT 4R b ek A R
AR N ZERD RS E R £ R,

3

B,

BEIRERE L LR

R AR

., T A& 116024 )

FEREB AR A

HBTHAERGM AT Z LEKEH

R RALE I 3 MR, R 3 ANAR B Ak Ay 3R, 3 /\féié’ﬂfﬁ“m#@ﬁi%ﬁﬁ“é‘ﬂ 2 B 5 HAL

HE AT kA — AR AR L AE AT HE T A A0 AR R BT RN R BT Bk 5 M R T
CHETTERF AR R E L LA AR A MBI AFEAE. ARN KT AL K
AL BT K S E R BURL G H TRt

At w
IR A R — AN - S

T B3 AN IRAE T E

kR £ RAE LS A

HOBER T ZE = m At KA EERGTEL — 2R 2 RFRME N HA LT URIER

U\ﬂr

EAERS TABARF

K FA A KT
FESERS: TU44

86 s.

KRB 2009-04-15; f&EBAH: 2011-01-20.

W Bt (DEM) ; 4E %
XEFRERD: A

PR E A ZHEEN R AR BT U AKRMD CPUZK . £FH K 2.8 GHz # PC#l

% 4 4t (DDA) 5 3R 1K

R B : 17 T4 Q03 A AR 4 9% Bh 0 H (2009T017) :“ Ju-t =" E K m H A IT & 1 % Bh 3 H (2010CB731502).

EEEA: X1 B

(1972-) . 3, 1+, # 4% . E-mail : junliu@dlut. edu. cn.



