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Abstract .
vaccines, it is important to know which fragments of pathogen-derived proteins
would bind to the MHC Il molecules. Most studies of the MHC 1[I epitope

prediction rarely gave the quantitative analyses of binding specificities. So the

In the design of peptide-based or other defined antigen-based

accuracy of these models still needs to be improved. AUC Optimized Gibbs
(AOG) method uses the homology reduced AUC, rather than the relative
It makes both the positive and negative
AOG achieves
average AUC values of 0. 771 and 0. 713 on the ten original and homology
reduced HLA-DR4 (B1 * 0401) epitope benchmarks, which are better than
0.744 and 0. 673 by the Gibbs sampling method. In the quantitative IEDB
MHC-1 benchmarks, AOG achieves an average AUC value of 0. 766,
compared to 0. 718 by the TEPITOPE. A detailed inspection of information
extracted from HLA-DR4 (Bl * 0401) data allows the identification of

positions with obvious specificities, i. e. » P1, P4, P6 and P9 positions, which

entropy to guide the sampler.

information of the samples be incorporated into the model.

have distinct influence on the MHC-peptide binding.

Key words: Gibbs sampling method; epitope; MHC [l molecules; reduced

homology

0 Introduction

Recently there has been constant concern
about the rules for the binding of peptides to
MHC molecules. The MHC molecules deliver
fragmented pieces of an antigen protein on the
host cell’s surface to the cytotoxic T cell (Tc) or
the helper T cell (Th), giving rise to their
development and activation. It is important to
know which peptide fragments of pathogen-

derived proteins most probably bind to a certain

MHC-molecule. The MHC [ binding groove is

Received by: 2012-12-05; Revised by: 2013-10-09.

closed, which tends to bind short peptides of 8-
10 amino acids by both ends. But the MHC Il
binding groove is open, which makes the length
of the peptides bound by MHC [l molecules
unconstrained. And relative to the MHC [
molecules, the binding pockets of MHC I
the

permissive  in

The

molecules are more

accommodation of amino acids. two
obstacles greatly affect the performance of MHC
Il binding peptide prediction.

On the opinion of the IBS hypothesis-, for
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most peptides, each side chain of the peptide
sequence contributes a certain amount to the
MHC I
molecules; and the MHC [I-peptide ligands

stability of binding peptides to

binding affinity is independent of the peptide
sequence. The influence of residues at each
position in the peptide sequence on the binding
affinity can be considered independently. Based
on this hypothesis, some linear models, additive
PLS method™ , stabilized matrix method™,
Gibbs sampling method™ and SMM-align
method™ have achieved reasonable performance.

AUC Optimized Gibbs (AOG) method used
in the study is a changed version of Gibbs
sampling method. The Gibbs sampling method
was applied to predict class I and class 1l
epitopes™’; Whereas, the relative entropy is
used to guide the sampler, resulting in that only
binding peptides are used for training, and non-
binding peptides are discarded. This leads to a
low efficient use of the training data. In the
study, the homology reduced self-fitting AUC is
used to guide the sampler, resulting in that both
the positive and negative information could be
incorporated into training the sampler. In the
HLA-DR4 (B1 * 0401) epitope benchmark and
quantitative IEDB  benchmark, the AOG
algorithm is used as well as Gibbs sampling
method"?and TEPITOPE'™ . Through reduction
of the noise from the experimental data using the
AOG method, MHC [l binding specificities are
computationally predicted, and the profile of the
MHC II molecule interacting with its peptides is
analyzed from the results of the algorithm. The

processing of class [[ epitopes as well as design

of better peptide vaccine can be understood well.
1 Methods and materials

1.1 Training and testing data
1.1.1 Training datasets for HLA-DR4 (Bl *
0401) 462 Binding peptides and 177 non-

binding peptides that have interacted with the
HILA-DR4 (B1 * 0401) constitute the HLLA-DR4
(B1 * 0401) training set. The binding peptides
are extracted from SYFPEITHI', which have
been described by Nielsen, ez al/'’; The non-
binders are extracted from MHCBN"™', which
have been described by Murugan, et /™. Both
the training set and the evaluation set contain
two columns. The first column gives the peptide
sequence, and the second one gives the IC;, log-
transformed binding affinity pICs,, pICs, =1 —
log(ICs,/(nmol « L™1))/log 50 00081, This set
is referred to as DR4-training.

1.1. 2 Testing datasets for HLA-DR4 (Bl *
0401) HLA-DR4 (Bl * 0401) benchmarks are
the same benchmarks used by Nielsen, et al™.
They consist of ten datasets; and eight of ten
datasets are downloaded from MHCbench
(http://www. imtech. res. in/raghava/mhcbench) ,
and Geluk

the rest two are Southwood

datasets™.

The same threshold to determine
binders and non-binders as Nielsen, et al.
(2004)™ is used in study in this paper. For the
8 MHCbench datasets, peptides with a binding
value of non-zero are defined as binders and all
other peptides are defined as non-binders. For
the Southwood and Geluk datasets, an affinity of
1 000 nmol/L is taken as the threshold, which is
peptides with an associated pICs;, larger than
0. 36 are defined as binding peptides. The 10
benchmarks are through homology reduction,
which ensures that no peptide in the benchmarks
has a match in the training set with more than 7
identical amino acids over an alignment of 9
amino acids. Tab. 1 shows a summary of the
original and the homology-reduced benchmark
datasets, respectively.

1.1.3 IEDB HILA-DR

restricted testing

IEDB HLA-DR
restricted peptide-binding data for each HLLA-DR

datasets A quantitative

alleles partitioned into 5 datasets using the
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method described by Nielsen, et al'*. Each
dataset and its corresponding partition are
available online at http://www. cbs. dtu. dk /

suppl/immunology/NetMHC-2. 0. php.

Tab.1 Description of HLA-DR4 (B1 % 0401) testing
datasets
original homology-reduced
Set

binders non-binders total binders non-binders total
Setl 694 323 1017 248 283 531
Set2 381 292 673 161 255 416
Set 3a 373 217 590 151 204 355
Set 3b 279 216 495 128 197 325
Set 4a 323 323 646 120 283 403
Set 4b 292 292 584 120 255 375
Set ba 70 47 117 65 45 110
Set 5b 48 37 85 47 37 84
Geluk 16 6 22 15 6 21
Southwood 22 83 105 19 80 99

1.2 AOG algorithm

1.2.1 Core nonamers filter There is a binding
core in the binding peptides to MHC I
molecules, which is approximately 9 amino acids
long. This binding core reveals some distinctions
from randomness in the frequency of amino acids

(i. e., the background in the SWISS-PROT

databasel'™ ). And a statistically significant

alignment is likely to grasp such distinctions™? .
On the basis of this idea, the algorithm samples
possibly ungapped alignment from n peptide
sequences (n is the number of binding peptides
in the training set). Because nearly all the
binding peptides have a hydrophobic residue (F,
I. L, M, V., W, Y) at P1 position'"*), the
sampling restricts to the ungapped nonamers
that have a hydrophobic residue at P1 position.
The size of the search space could be greatly
binding peptide

reduced, e. g., given a

'GNKLCALLYGDAEKP',
selecting are 'LCALLYGDA' and
'LLYGDAEKP', and the other candidates that

nonamers for

do not have a hydrophobic residue at Pl are
discarded.

1. 2. 2 Sequence weights Closely related
sequences carry similar information, and a large
set of them make the raw amino acid frequencies

badly biased. @ Hobohm 1-like

is used for clustering the sequences

calculation
algorithm"'*
and a sequence identity of 62% is used as the
cluster threshold, e. g., if sequence A has 6

(Z=9X62%) amino acids identical to the
sequence B in their aligned positions, A and B
are clustered, and are assigned a weight 1/2. If
C has 6 amino acids identical to sequence A or B
in their aligned positions, A, B and C are
clustered and assigned a weight 1/3.

1. 2. 3 Scoring matrix calculation  Pseudo-
frequency method is used for estimating the
frequency of amino acids for low counts™!. For
an alignment, the pseudo-count frequency of
amino acid ¢ at position J is

g = 20 ‘;"Iifqu' ¢h)

[

Where f7; is the observed frequency of amino
acid i at position j. P, is the background
frequency of amino acid i’ in the SWISS-PROT
database'. g, is calculated as

g = QrQ.e™ (2)
Where Q; is the observed frequency of amino
acid i’ in the alignment and A, is a random scale
number (2 by default); S;; is the observed
probability of occurrence for i and ¢’ amino pair
from the Blosum62 substitution matrix-**'.

The effective amino acid frequency is

a-f/UJf[BogU
o (3)

Where « is the number of clusters, f is the

fi =

weight on the pseudo-count correction. A too
great value of # would reduce the sensitivity of
scoring prediction matrix. The score of the
amino acid 7 in position j is computed as log-odds

ratios:

log(f; /P
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Since different positions have different impact on
the binding peptides and MHC I molecule
interaction, i. e., anchor positions are more
important than ordinary positions. The position-

determined parameter y; is introduced; And the

final 9 X 20 scoring matrix M is calculated as

my; = D yulog(f; /P (1)
i=1

The score of a nonamer subpeptide is the sum of
all the scores of amino acids in the nine
positions. And the score of a peptide is the
highest score of all nonamer subpeptides in the
peptide sequence.

1.2.4 AUC calculation
( ROC)H

The receiver operator
characteristics curve is a two-
dimensional curve; the false positive rate of the
prediction is plotted on the X axis and the true
positive rate of the prediction is plotted on the Y
axis over a continuous range of cut-off values
from high to low. The AUC value is the area
under the ROC curve; it reflects the ability of a
model that can tell a randomly chosen positive
instance from a randomly chosen negative
onel™. In the study, ROC analysis is used for
measurement of the ability of different models to
identify the MHC class Il epitopes. Homology
reduced AUC is calculated on the Hobohm 1-
like'*! homology-reduced training dataset. This
implement ensures that there are not two
peptides in the training set that have over nine
identical continuous amino acids.

1.2.5 AOG algorithm (i) raw alignment: a
new starting point is chosen randomly in a
peptide sequence. The random alignment is run
for 5 000 times to reach a relatively high-AUC
alignment. Since the alignment space has a very
large number of local maxima with close to
identical prediction accuracy, this procedure is
with  different initial

repeated 100 times

configurations. The probability of accepting a

new alignment in the sampling is calculated as;
P — min [1. e(AU(‘MW—AU(‘OId)/T] 5)
Where T is a scalar. (ii) Precise alignment: for
the starting point of the binding peptide voted by
a majority of the 100 alignments in (i), twice
selecting probabilities of other starting points
are used. The precise alignment is run for
100 000 times to reach the final optimal
alignment. (iii) The two factors that influence
the performance of the scoring matrices are the
weight 8 in the effective amino acid frequency
calculation and the position specific weight g;. A
two-stage  Monte  Carlo method"'" is
implemented, alternately shifting g, in Eq. (4)

and B in Eq. (3) to optimize these parameters.
In (i), the scalar T implicit in Eq. (5) is
set to 0. 001, that reduces the probability of
accepting unfavorable alignment; In (ii), the
scalar T is set from 0.1 to 0. 001, that gradually
reduces the probability of accepting unfavorable
alignment; In (iii), the scalar T is set to 0. 001,
that reduces the probability of accepting
unfavorable score matrices. The altered T in (ii)
makes the probability P unfixed and accordingly
guarantees the alignment chain irreducible and

aperiodic (and thus ergodic)t™,
2 Results

2.1 MHC [ (HLA-DR4 (B1 * 0401)) weight
matrix extraction

Using HLA-DR4 (B1 * 0401) training data
DR4-training, an AUC-guided iterative training
process is employed to get the optimal
alignment, parameters and the corresponding
scoring matrix. The final scoring matrix for
HLA-DR4 (B1 % 0401) is shown in Fig. 1. Each
item m; of the scoring matrix M respectively
corresponds to a kind of amino acid i in a
sequence position j, and the sum of these scores

is the predicted binding affinity. Hence, the



32 X &

2 I X

¥ % #

¥ 954

scoring matrix M can be seen as the impact of
each amino acid in sequence positions on the
binding affinity. The height of the symbol of the
amino acid 7 is proportional to the absolute value
of m;. The upside or upside-down symbol
represents the positive or negative sign of m;
respectively. The colors of amino acid symbols
represent their physicochemical characteristics,
i. e., black, neutral and hydrophobic; blue,
basic; green, neutral and polar; red, acidic.
(due to print limit, here using different shades

for demonstration)
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Fig. 1  The weight coefficients of amino acids in
HLA-DR4 (Bl % 0401) peptides
Each symbol column corresponds to a

sequence position between P1 and P9.

2.2 Results for the HLA-DR4 (B1 * 0401) data
AOG method,
Gibbs sampling method and TEPITOPE are
HLA-DR4 (B1 * 0401)

The performance of the

compared on the
benchmarks. The results of Gibbs sampler are
calculated with the weight matrix offered by
Nielsen; this weight matrix is trained with the
positive samples of the DR4-training; the results
of TEPITOPE are gained with the weight matrix
from ProPred". The AUC value of each method
on the 10 benchmarks is illustrated in Fig. 2(a)
and Fig. 2(b). It is observed that AOG gives a

better performance than the Gibbs sampler and

TEPITOPE. The average AUC values on the
original and homology reduced benchmarks are
0. 771 and 0. 713, respectively. The average
AUC values are 0. 744 and 0. 673 for the Gibbs
sampler and 0. 702 and 0. 667 for TEPITOPE.
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(b) AUC values for homology reduced testing datasets

Fig.2 Prediction performance of various methods

on the HLA-DR4 (B1 % 0401) benchmarks

2.3 Results for quantitative IEDB HLA-DR data

The predictive performances of AOG and
TEPITOPE on the quantitative IEDB benchmark
datasets are estimated using five-fold cross-
validation. In each cross-validation, 1/5 of the
data are left out for evaluation and the remaining
4/5 are used for an alternating training. The
predictive performances of AOG and TEPITOPE
on the 11 HLA-DR allele benchmarks are shown
in Tab. 2. The predictive performances of AOG
method and TEPITOPE are in terms of AUC

values, using a binding affinity threshold of 500
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nmol/L. The results of TEPITOPE are obtained
with the wuse of the scoring matrix from
ProPred®™. Since ProPred offers scoring
matrices for only 11 alleles, the rest 3 alleles are
not included in the table. It is clear that AOG
method has a higher
TEPITOPE for most alleles (10/11). Only for

one allele (DRB1 * 0404) does the TEPITOPE

performance than

outperform AOG method.

Tab. 2 Predictive performances of AOG and TEPITOPE
for the 11 HLA-DR alleles in the quantitative
IEDB benchmark datasets

Predictive performances

positions that are presented in Fig. 1, the
crystal structures of DRB1 * 0401 (PDB id:
1J8H, 1D5Z, 1D6E, 2SEB, 1D5M, 1D5X) are
used to find amino acids that make nonbonding
contact with the peptides (i. e., two residues
are defined to be nonbonding contact if the
distance of two atoms of these residues is smaller
than 0.4 nm)"""', Tab. 3 lists the amino acids of

a-chain and B-chain of DRB1 * 0401 nonbonding

contact with the peptides.

Tab.3 The amino acids of the HLA-DR4 (B1 * 0401)

molecule nonbonding contact with the peptides

position  chain amino acids

Allele Total Binders

TEPITOPE AOG
DRBI * 0101 5 166 3 505 0.720 0. 754
DRBI1 * 0301 1020 276 0. 664 0.769
DRBI1 * 0401 1024 510 0.716 0.781
DRBI1 * 0404 663 386 0.770 0.752
DRBI1 * 0405 630 426 0. 759 0.792
DRBL1 * 0701 853 498 0.761 0.773
DRBI * 0802 420 148 0.766 0. 801
DRB1 * 01101 950 429 0.721 0.770
DRBI * 01302 498 199 0. 652 0. 760
DRBI1 * 01501 934 450 0. 686 0.741
DRB5 * 0101 924 478 0. 680 0.733
Ave 0.718 0. 766

3 Discussion

As shown in Fig. 1, the height of each
amino acid symbol is proportional to its absolute
score, which is the contribution of the amino
acid in a sequence position to the MHC-peptide
binding affinity, and the height of all amino acid
symbols stacked on each position along P1-P9 is
proportional to the sum of corresponding
absolute scores for the 20 possible amino acids
on the position, which is the contribution to the
binding affinity. The positions in core region of
the peptides have distinct specificities, i. e. ,
P1, P4, P6 and P9 positions have distinct
influence on the HLA [l -peptide binding.

For the purpose of interpreting the amino

acid characteristics in HLA [l -peptide primary

a-chain  Ile7 Phe24 Tle31 Phe32 Trp43 Ala52 Ser53 Phe54

m B-chain Asn82 Val85 Gly86 Phe89
- a-chain Phe24
B-chain Thr77 Tyr78 His81 Asn82
- a-chain  GIn9 Phe22 Phe54 Gly58 Ala59 Asn62
B-chain Tyr78
a-chain  GIn9 Asn62
B gchain Hist3 Phe26 [[JEE 1070 Lys71 Ala7d Tyr7s
- a-chain Gly58 Ala61 Asn62 Val65
5

B-chain Hisl3 GIn70 Lys71
- a-chain -Asn62 Val65 -Asn69

B-chain Valll Hisl3 Lys71

a-chain  Val65 Asn69

B-chain Tyr30 Tyrd7 Trp61 Leu67
a-chain Val65 Ala68 Asn69 Ile72
B-chain Tyr60 Trp61l

a-chain Asn69 1le72 Met73 Arg76

P9
B-chain - Tyr37 - Tyr60 Trp61

P7

P8

Neutral amino acids are colored black,
electropositive and basic amino acids are colored
blue, and electronegative and acidic amino acids
are colored red (due to print limit, here using
different shades for demonstration).

P1 position: Residues of the HLA DRBI *
0401 molecule that make nonbonding contact
with residues of peptides in P1 position are Ile7,
Phe24, Ile31, Phe32, Trp43, Ala52, Ser53,
Phe54 in the a-chain and Asn82, Val85, Gly86,
Phe89 in the B-chain (see Tab. 3). It is found
that, the P1 pocket is shaped by conserved

aliphatic amino acids (llea7, Ilea31, Sera53,
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Alaab52, ValB85, GlyB86) and aromatic amino
acids ( Phea24, Phea32, Phea54, Trpa43,
Phep89) and represents a highly hydrophobic
environment, Jardetzky's single  residue
substitution experiment"* demonstrates that the
main determinant of binding is a large pocket
that accommodates a hydrophobic or aromatic
amino acid side chain near the N terminus of the
peptide (the P1 position). From Fig. 1, the
following can be figured out: (i) The sum of
absolute values in P1 position is significantly
larger than that of any other position, indicating
that P1 position has the highest influence on the
binding affinity; (ii) Polar amino acids have
negative scores in P1, which indicates that polar
amino acids are unfavorable to the binding;
Hydrophobic amino acids have positive scores in
P1., which indicates that these hydrophobic
amino acids are favorable to the binding; (i) and
(ii) are in accordance with the Jardetzky' s

03] (iii) Stable amino acid residues

conclusion
F, W and Y have much higher scores than less
stable amino acid residues I, L, M and V, which

indicates that stable amino acid residues are

more favorable to the binding; this result is in

[18]

accordance with the Tobita' s conclusion
Difference in stability of amino acids in Pl
closely correlates with the binding affinity.

P4 position: Residues of the HLA DRBI %
0401 molecule that make nonbonding contact
with residues of peptides in P4 position are
GIn9, Asn62 in the a-chain and His13, Phe26,
Asp28, GIn70, Lys71, Ala74, Tyr78 in the -
chain (Tab. 3). The electronegative and acidic
amino acids AspB28 and electropositive and basic
amino acids Hisf13 and Lysf71 endow the P4
pocket polar binding characteristics; Previous
studies'” on the HLA-peptide affinity have
shown that the positively charged Lysp71 can

make direct contact with side-chain residues

from the antigenic peptide; Lysf71 makes this
pocket tend to have a high affinity for negatively
charged or uncharged polar amino acids,
whereas disfavors positively charged amino acids
(like Lys). This is an approval of the algorithm
in P4 position: in Fig. 1, negatively charged
amino acids Asp and Glu have the highest
positive scores, whereas electropositive and
basic amino acids Lys, Arg and His have the
lowest negative scores. From Fig. 1, it is also
found that bulky amino acids Phe and Trp also
have relatively high positive score that may
indicate that P4 pocket is a large sized one.

P6 position: Residues of the HLA DRBI *
0401 molecule that make nonbonding contact
with residues of peptides in P6 position are
Glull, Asn62, Val65, Asp66, Asn69 in the a-
chain and Valll, Hisl3 and Lys71 in the B-chain
(Tab. 3). As indicated by the amino acid
symbol height stacked in P6 position in Fig. 1,
P6 is a major anchor and inhibitory residue
position. The electronegative and acidic amino
acids Gluall, Aspa66 and electropositive and
basic amino acids HisB13 and Lysp71 endow the
P6 pocket a polar interface; The experimental
resultst® have shown that this pocket favors the
binding of medium sized (like Met, Leu and Ile)
or polar amino acid residues. In the scoring
matrix (Fig. 1), the negatively charged amino
acids Asp and polar amino acids Asn, Ser and
Thr have positive scores, which may be
beneficial to the binding affinity.

P9 position: Residues of the HLA DRBI *
0401 molecule that make nonbonding contact
with residues of peptides in P9 position are
Asn69, Tle72, Met73, Arg76 in the a-chain and
Glu9, Tyr37, Asp57, Tyr60, Trp6l in the B-
chain (Tab. 3). As indicated by the amino acid
symbol height stacked in P9 position in Fig. 1,

P9 is a major anchor and inhibitory residue
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position. The P9 pocket is shaped by neutral

amino acids  Tyrf37 and TyrB60  and
electronegative and acidic amino acids Glup9 and
AspB577%1. So the positively charged or polar
residues are favored in the P9 pocket. In the
scoring matrix (Fig. 1), the positively charged
amino acids His and polar amino acids Gly, Ser
and Gln have positive scores. It is indicated that
these amino acids may enter the inner cavity wall
of P9 easily. As an unexpected result, the
hydrophobic amino acid Ala has the highest
score in the P9 position, which indicates that P9

pocket is a small sized pocket.
4 Conclusion

A method, AUC Optimized Gibbs (AOG)
is developed for prediction of peptide binding to
MHC II molecules. Tests on 10 HLA-DR4 (Bl
¥ 0401) benchmarks and quantitative IEDB
HLA-DR benchmark show that AOG is a better
predictive method for MHC class Il epitopes
than Gibbs sampling method and TEPITOPE.
The positions in core region of the HLA-DR4
(B1 * 0401) peptides have distinct specificities.
i. e., P1, P4, P6 and P9 positions have distinct

influence on the MHC-peptide binding.
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