文章编号:1000-8608(2021)02-0189-08

垂直振动压实法成型 SMA-13 混合料体积参数设计标准研究

蒋应军*1,倪辰秧1,张 宇1,邓长清1,张 伟1,杨迪锋1,薛金顺2

(1.长安大学特殊地区公路工程教育部重点实验室,陕西西安 710064;2.湖北文理学院土木工程与建筑学院,湖北 襄阳 441053)

摘要:为研究体积参数对 SMA-13 混合料性能的影响,采用垂直振动压实法(vertical vibration compaction method, VVCM)成型 SMA-13 混合料试件,评价了 VVCM 的可靠性,并以力学性能最佳为原则,提出了 SMA-13 混合料体积参数标准.结果表明:SMA-13 混合料各力学性能均随空隙率的增大呈凸曲线变化,建议空隙率设计标准为 2.5%~4.0%;力学性能均随沥青饱和度的增大呈凸曲线变化,建议 74%~83%为沥青饱和度设计标准;与空隙率、沥青饱和度相比,矿料间隙率的大小无法准确反映混合料性能的优劣,对于矿料间隙率设计标准,建议其最小值取 14.5%.

关键词:垂直振动压实法;体积参数;力学性能;设计标准 **中图分类号:**U416.2 **文献标识码:**A **doi**:10.7511/dllgxb202102010

0 引 言

沥青玛蹄脂碎石混合料(SMA)因其良好的 路用性能被广泛应用于路面面层^[1].目前, Marshall法、GTM 法和 Superpave 法仍是设计 SMA 混合料最具代表性的方法^[2].然而,长期工 程经验表明 Marshall法压实标准偏低,且在压实 过程中集料被击碎的情况比较严重,这不仅造成 集料级配的变化,而且会影响对实际路用性能预 测的准确性,亦会影响 SMA 混合料的配合比设 计^[3-7].GTM 法和 Superpave 法模拟现场受力情 况对试件进行搓揉压实和旋转压实,与现场相关 性强,但由于压实设备过于昂贵而难以普及,同时 混合料压实功要求高,用作表面层时,其抗疲劳性 能可能不足^[8-10].因此,本文采用与现行交通标准 和施工现场实际压实效果更接近的垂直振动压实 法(VVCM)进行 SMA 混合料设计^[11-12].

目前 SMA 混合料配合比设计方法为体积设 计法,体积参数是反映混合料内部结构、影响混合 料性能的重要因素^[13-15].在混合料级配和试验条 件相同的情况下,压实功和油石比对体积参数有 较大的影响.因此,当压实标准发生变化时,体积 参数指标将发生变化,最佳油石比也会发生变化. 本文研究当采用 VVCM 成型 SMA-13 混合料试 件时,体积参数与混合料性能之间的相关关系,并 以力学性能最佳为原则,提出 VVCM 成型 SMA-13 混合料体积参数标准.

1 原材料及试验方案

1.1 原材料

(1)沥青

沥青采用韩国双龙牌 SBS 改性沥青,其技术 性质见表 1.

(2)集料

试验集料均来自陕西商洛,其中粗集料为玄 武岩碎石,细集料为石灰岩机制砂,矿粉为石灰岩 矿粉.

1.2 矿料级配

本文选择3种不同的级配类型成型试件,分 别为中国《公路沥青路面施工技术规范》(JTG F40—2004,记为CH)、美国AASHTO规范(记 为AM)和澳大利亚标准AS2150(记为AU)中 SMA-13对应的级配中值,见表2.采用的油石

收稿日期:2020-08-04; 修回日期:2021-01-18.

基金项目: 吉林省交通运输科技计划项目(2017ZDGC-7).

作者简介: 蒋应军*(1975-),男,教授,博士生导师,E-mail:jyj@chd.edu.cn;倪辰秧(1997-),男,硕士生,E-mail:chenyangni@chd.edu.cn.

第 61 卷

1 ab. 1 1 echnical properties of SBS modified asphalt								
项目	25 ℃针入度/ 5℃延度		软化点	135 ℃运动黏度/	15 ℃密度/	RTFOT 残留物		
	0.1 mm	cm	(环球法)/℃	(Pa • s)	$(g \cdot cm^{-3})$	质量损失/%	针入度比/%	5 ℃延度/cm
测试值	72	43	83	2.0	1.04	-0.29	70	27
规范值	60~80	≥30	≥55	≪3.0	实测记录	± 1.0	≥60	≥20

表1 SBS 改性沥青技术性质

表2 矿料级配

Tab. 2 Aggregate gradation

如画米刊	通过下列筛孔尺寸质量分数/%									
级配矢型	16 mm	13.2 mm	9 mm	4.75 mm	2.36 mm	1.18 mm	0.6 mm	0.3 mm	0.15 mm	0.075 mm
СН	100	95	62.5	27.0	20.5	19	16	13.0	12	10
AM	100	95	52.0	24.0	20.0	17	15	13.5	—	9
AU	100	95	62.0	32.5	25.5	21	18	15.5	12	10

比分别为 4.8%、5.1%、5.4%、5.7%和 6.0%.

1.3 试件成型方案

将所需集料放入(105±5) ℃的烘箱中烘干至 恒重后加入拌和锅,均匀拌和粗集料和细集料,然 后将准确称量的沥青加入,开启拌和锅再次搅拌. 矿粉应单独加入充分搅拌.总拌和时间为 180 s.

垂直振动压实仪是 VVCM 的核心,其构造 见图 1. 结合课题组已有研究成果^[16-17],垂直振动 压实仪工作参数为工作频率 37 Hz,名义幅度

图 1 垂直振动压关仪的构造

1.2 mm,上车系统质量 108 kg,下车系统质量 167 kg.试件成型时,将 SMA-13 混合料装入试模,振动压实 65 s.

2 SMA-13 混合料成型方法评价

为了评价提出的 SMA-13 混合料成型方法, 选择不同成型方法(Marshall 法、SGC 法和 VVCM)制备油石比 5.7%的 SMA-13 混合料试 件各 6个,测试并分析其体积参数和力学性能变 化情况.其中,VVCM 采用振动时间为 65 s; Marshall法为双面击实 75 次,重型 Marshall 法 为双面击实 155 次;SGC 法为旋转压实 100 次.

2.1 体积参数

SMA-13 混合料 VVCM 试件、Marshall 试件和 SGC 试件的体积参数见表 3.

由表 3 知, VVCM 试件和重型 Marshall 试 件两者的密度接近重交通压实标准的密度,约为 1.02倍的 Marshall 试件密度,且二者的体积参数 基本一致,其中空隙率明显小于 Marshall试件

表 3 不同成型方法试件的体积参数 Tab. 3 Volume parameters of specimens with different forming methods

计供来到	密度		空隙率		矿料间隙率		沥青饱和度	
以什笑堂	实测值/(g・cm ⁻³)	相对值	实测值/%	相对值	实测值/%	相对值	实测值/%	相对值
Marshall	2.529	1.000	4.1	1.00	17.06	1.00	75.90	1.00
重型 Marshall	2.575	1.018	2.4	0.58	15.58	0.91	84.57	1.11
VVCM	2.578	1.019	2.3	0.56	15.45	0.91	85.42	1.13
SGC	2.557	1.011	3.0	0.73	16.14	0.95	81.11	1.07

的,说明二者的压实功基本相同.SGC 试件的密 度比 VVCM 试件和重型 Marshall 试件的略小, 是 Marshall 试件的 1.01 倍,说明 SGC 旋转压实 100 次的压实功比 VVCM 和重型 Marshall 试件 的略小,但是比 Marshall 试件的大.

2.2 力学性能

SMA-13 混合料 VVCM、Marshall 和 SGC 试件的力学强度见表 4,试件的制备和试验过程 均按照《公路沥青路面设计规范》(JTG D50—2017)进行.

- 表 4 不同成型方法 SMA-13 混合料试件力 学强度
- Tab. 4 Mechanical strength of SMA-13 mixture specimens with different forming methods

试件类型	60 ℃稳定 度/kN	20 ℃抗压 强度/MPa	-10 ℃劈裂 强度/MPa	60 ℃抗剪 强度/MPa
Marshall	14.17	6.39	3.37	1.19
重型 Marshall	17.52	7.32	4.04	1.49
SGC	18.49	7.61	4.23	1.52
VVCM	19.41	7.75	4.43	1.65

由表 4 知, VVCM 试件的稳定度、抗压强度、 劈裂强度和抗剪强度分别是标准 Marshall 试件 的 1.37、1.21、1.31 和 1.39 倍, 平均高 32%; 而 VVCM 试件的稳定度、抗压强度、劈裂强度和抗 剪强度分别是重型 Marshall 试件的 1.11、1.06、 1.10 和 1.11 倍, 平均高 9%; 同时, VVCM 试件 的稳定度、抗压强度、劈裂强度和抗剪强度分别是 SGC 试件的 1.05、1.02、1.05 和 1.09 倍, 平均高 5%.这说明虽然重型 Marshall 法和 VVCM 的压 实功相当, 但是相对于重型 Marshall 法, VVCM 振动对提升 SMA-13 混合料试件的力学性能有 帮助,且其性能略优于 SGC 试件的,说明 VVCM 相对于 SGC 法能提升 SMA-13 混合料的力学性 能.

3 体积参数对 SMA-13 混合料的力 学性能影响及设计标准

3.1 空隙率对力学性能影响及设计标准

3.1.1 油石比对空隙率的影响 空隙率是压实 混合料空隙体积占总体积的百分率,是沥青混合 料设计时一个重要的体积参数指标,也是沥青混 合料性能的主要影响因素^[18].油石比r对沥青混 合料空隙率e的影响见图 2.

图 2 油石比对空隙率影响 Fig. 2 Effect of oil stone ratio on void ratio

由图 2 知, 压实功相同时, 矿料级配及油石比 对压实沥青混合料空隙率影响显著. 随着油石比 增大, 不同矿料级配的 SMA-13 混合料空隙率均 近似线性降低, 这是因为当沥青用量较少时, 沥青 润滑作用较弱, 矿料颗粒间摩擦力比较大, 压实功 无法将矿料压密, 所以随着沥青用量的增加, 沥青 不断填充矿料空隙, 空隙率逐渐降低.

3.1.2 空隙率对力学性能的影响 根据 SMA-13 混合料 VVCM 试件力学性能与体积参数之间 关系试验结果,绘制力学性能与空隙率曲线,见图 3.其中 M_s 为试件的马歇尔稳定度, R_c 为试件的 抗压强度, τ_d 为试件的抗剪强度, R_i 为试件的劈 裂强度, S_{max} 表示各曲线峰值, R 表示曲线标准 差.

由图 3 知,随着空隙率增大,SMA-13 混合料 各力学性能呈现出先增大后减小的变化规律.这 是因为当原材料、级配类型和试件成型方法一定 时,SMA-13 混合料油石比越大,空隙率越小. 3.1.3 空隙率设计标准 空隙率与力学性能函 数见表 5,表中 e 代表 S_{max}对应的空隙率, e_{min}、 e_{max} 代表 0.95S_{max}对应的空隙率范围.

由表 5 知,各力学性能最大值对应的空隙率 最小为 3.25%,最大为 3.37%.考虑实际施工时 的情况,建议采用 0.95S_{max}对应的空隙率作为设 计标准.各项力学性能对应的 e_{min}和 e_{max}交集范围 为 2.45%~4.03%,故采用 2.5%~4.0%为空隙 率的标准建议值.

规范认为,沥青混合料空隙率小,容易出现车 辙、泛油等病害.而 VVCM 试件相对较小的空隙 率和混合料密度的提高,不是源于过多的沥青胶 浆,而是源于压实方式的改变和压实功的提升,造 成矿料间隙率的减小及矿料空间相对位置的改

Fig. 3 Effect of void ratio on mechanical property

表 5 力学性能与空隙率之间函数表达式

力学性能	曲线方程	R	e / %	e_{\min} / $\frac{9}{10}$	$e_{ m max}$ / $\%$
$M_{ m s}$	$M_{\rm s} = -1.18e^2 + 8e + 7.2$	0.82	3.37	2.45	4.32
$R_{ m c}$	$R_{\rm c} = -0.29e^2 + 1.8e + 5.3$	0.90	3.29	2.09	4.45
$ au_{ m d}$	$\tau_{\rm d} = -0.13e^2 + 0.9e + 0.29$	0.91	3.25	2.45	4.03
$R_{ m i}$	$R_{\rm i} = -0.26e^2 + 1.7e + 1.5$	0.84	3.37	2.42	4.35

变.同时,混合料空隙率过大,其力学性能呈现下降趋势,而且容易出现水损坏、沥青老化等病害,影响混合料的耐久性^[19],所以建议空隙率最大值取4.0%.因此,本文建议空隙率设计标准为2.5%~4.0%较为合理.

3.2 沥青饱和度对力学性能影响及设计标准

3.2.1 油石比对沥青饱和度的影响 SMA-13 混合料沥青饱和度随油石比的变化见图 4.

由图 4 知,在同一矿料级配下,随着油石比增大,沥青饱和度呈现递增趋势,这是因为沥青的增加填充了矿料的空隙,使混合料的沥青饱和度不断增大.

3.2.2 沥青饱和度对力学性能的影响 根据试

验结果,绘制力学性能与沥青饱和度曲线,见图 5.

Fig. 4 Effect of oil stone ratio on VFA

Fig. 5 Effect of VFA on mechanical property

由图 5 知, SMA-13 混合料各力学性能均随 沥青饱和度的增大呈凸曲线变化.当油石比较小 时,沥青饱和度较小,沥青对矿料颗粒的黏结力不 足,导致混合料的力学性能较差;随混合料中沥青 含量逐渐增加,沥青对矿料颗粒的黏结力逐渐增 强,混合料的力学性能均得到提升;力学性能达到 峰值之后,进一步增大沥青用量,混合料的沥青饱 和度继续增大,但是,由于混合料中自由沥青数量 过多,导致矿料颗粒被挤开,沥青对矿料的黏结作 用变弱,力学性能下降.

3.2.3 沥青饱和度设计标准 沥青饱和度与力 学性能函数见表 6,其中 e_a 代表 S_{max}对应的沥青 饱和度,e_{a,min}、e_{a,max}代表 0.95S_{max}对应的沥青饱和 度范围.

表 6 力学性能与沥青饱和度之间函数表达式

Tab. 6 Function expression between mechanical properties and VFA

力学性能	曲线方程	R	$e_{\rm a}/\sqrt[9]{0}$	$e_{\rm a,min}/\sqrt[9]{0}$	$e_{\mathrm{a,max}}/\%$
$M_{ m s}$	$M_{\rm s} = -0.029 e_{\rm a}^2 + 4.6 e_{\rm a} - 159$	0.88	78.43	72.41	84.45
$R_{ m c}$	$R_{\rm c} = -0.007 e_{\rm a}^2 + 1.0 e_{\rm a} - 35$	0.94	78.95	71.31	86.59
$ au_{ m d}$	$\tau_{\rm d} = -0.003 e_{\rm a}^2 + 0.55 e_{\rm a} - 22$	0.94	79.82	74.11	84.50
$R_{ m i}$	$R_{\rm i} = -0.006e_{\rm a}^2 + 0.93e_{\rm a} - 37$	0.87	78.27	73.17	83.38

由表 6 知, S_{max} 对应的沥青饱和度范围为 78.27%~79.82%.同理,以 0.95S_{max} 对应的沥青 饱和度为设计标准,在各项性能中所交叉的范围 为 74.11%~83.38%,综合考虑各种力学性能, 建议沥青饱和度设计标准为 74%~83%.

3.3 矿料间隙率对力学性能影响及设计标准

3.3.1 油石比对矿料间隙率的影响 在设计及 施工过程中,许多因素都会对矿料间隙率的大小 产生影响,包括压实功、矿料性质、矿料级配及油 石比等.油石比对矿料间隙率的影响曲线见图 6.

Fig. 6 Effect of oil stone ratio on VMA

由图 6 知,在 3 种不同的级配下,随油石比的 增大,混合料矿料间隙率呈凹曲线变化.在沥青用 量较少时,沥青对矿料颗粒的润滑作用不足,颗粒 间摩擦力较大,导致混合料难以被压实,所以随沥 青用量的增加,矿料间隙率逐渐减小;但当沥青用 量过多时,沥青会阻碍矿料颗粒的接近,导致试件 的矿料间隙率增大.

3.3.2 矿料间隙率对力学性能的影响 根据试验结果,绘制力学性能与矿料间隙率曲线,见图 7.

由图 7 知,SMA-13 混合料矿料间隙率与马歇尔稳定度有较好的相关性,但与其他性能之间的相关性较差.一般认为,矿料间隙率对沥青混合料的耐久性有重要影响^[20].我国规范中由最大公称粒径确定矿料间隙率,但是在一些实际工程中, 混合料的矿料间隙率即使不满足要求,也具有较好的使用性能和较大的油石比.因此,在我国相关规范中,矿料间隙率仅作为检验性指标使用.

3.3.3 矿料间隙率设计标准 在我国相关规范 中,矿料间隙率仅作为检验性指标使用,即确定最 佳油石比时,把OAC曲线相对应的矿料间隙率 与规范的最小矿料间隙率相比较,若矿料间隙率 未能达到规范要求,则需要对混合料级配进行调 整.国内外矿料间隙率研究及室内试验研究的矿 料间隙率对力学性能的影响规律表明^[21],沥青混 合料力学性能与矿料间隙率之间的相关性较差.

现行规范中,采用 Marshall 法成型 SMA-13 混合料试件, *e*_{m.min}=17%, *e*=3%~4%. 而重交通 压实标准为 Marshall 设计标准的 1.02 倍, SMA-13 混合料 VVCM 试件的空隙率标准为 2.5%~ 4.0%,采用两种方法成型试件时,VVCM确定的油 石比比 Marshall 法小 0.4%,因此给出 SMA-13 混合 料 VVCM 试件的矿料间隙率最小值标准为 14.5%.

4 结 论

(1) VVCM 试件的体积参数与重型 Marshall 试件和 SGC 试件基本一致,密度约为 Marshall 试件的 1.02 倍,空隙率明显降低; VVCM 试件力 学强度分别约为 Marshall 试件、重型 Marshall 试 件和 SGC 试件的 1.32、1.09 和 1.05 倍.

(2)同一矿料级配下,随着油石比增大,空隙 率呈现减小趋势;随空隙率增大,SMA-13 混合料 各力学性能均呈凸曲线变化.以 0.95S_{max}对应的 空隙率为设计标准,各项力学性能对应的空隙率 共同范围为 2.45%~4.03%,故提出空隙率设计 标准范围为 2.5%~4.0%.

(3)同一矿料级配下,随着油石比增大,沥青饱 和度呈现递增趋势;随沥青饱和度增大,SMA-13 混合料各力学性能均呈凸曲线变化.0.95S_{max}对应 交集为74.11%~83.38%,综合考虑各力学性能, 提出沥青饱和度设计标准范围为74%~83%.

(4)SMA-13 混合料的各力学性能与矿料间 隙率之间没有较好的相关性,因此仅把矿料间隙 率作为参考标准.以现行规范对矿料间隙率的规 定为基础,结合成型方法对体积参数影响,建议 14.5%为 SMA-13 混合料的最小矿料间隙率.

参考文献:

- [1] 杨 洋,马宝国,韩 森. 沥青玛蹄脂碎石混合料 (SMA)的组成及路用性能分析 [J]. 公路交通科技 (应用技术版),2012(5):81-83.
 YANG Yang, MA Baoguo, HAN Sen. Analysis of composition and road performance of SMA [J].
 Highway Transportation Technology (Applied Technology Edition),2012(5):81-83. (in Chinese)
- [2] 苗春泽. 沥青混合料体积参数及体积设计方法研究[D]. 成都:西南交通大学,2008.
 MIAO Chunze. The study on volume parameters and volume design of asphalt mixture [D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
- [3] XU Bin, CHEN Jingyun, ZHOU Changhong, et al. Study on Marshall design parameters of porous asphalt mixture using limestone as coarse aggregate [J]. Construction and Building Materials, 2016, 124: 846-854.
- [4] BROWN E R, CROSS S A. Comparison of

laboratory and field density of asphalt mixtures [J]. Transportation Research Record, 1991(1300): 1-12.

- [5] BUTTON J W, LITTLE D N, JAGADAM V, et al. Correlation of selected laboratory compaction methods with field compaction [J]. Transportation Research Record, 1994(1454): 193-201.
- [6] TAPKIN S, KESKIN M. Rutting analysis of 100 mm diameter polypropylene modified asphalt specimens using gyratory and Marshall compactors [J]. Materials Research, 2013, 16(2): 546-564.
- JIANG Yingjun, DENG Changqing, XUE Jinshun, et al. Investigation into the performance of asphalt mixture designed using different methods [J].
 Construction and Building Materials, 2018, 177: 378-387.
- [8] 李闯民. 沥青混合料体积参数研究 [D]. 南京:东南大学,2005.
 LI Chuangmin. Research on the volumetric property of asphalt mixture [D]. Nanjing: Southeast University, 2005. (in Chinese)
- [9] ASI I M. Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions [J]. Construction and Building Materials, 2007, 21(8): 1732-1740.
- [10] KHAN Z A, AL-ABDUL WAHAB H I, ASI I, et al. Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction [J]. Construction and Building Materials, 1998, 12(6/7): 373-384.
- [11] 蒋应军,韩占闯,胡永林. 冷再生混合料垂直振动 成型法设计与评价 [J]. 南京理工大学学报,2019, 43(2): 186-192.
 JIANG Yingjun, HAN Zhanchuang, HU Yonglin. Design and evaluation of cold recycled mixture by vertical vibration forming method [J]. Journal of Nanjing University of Science and Technology, 2019, 43(2): 186-192. (in Chinese)
- [12] 蒋应军,杨秀荣,李宁方,等.二灰碎石垂直振动 试验方法及评价 [J]. 建筑材料学报,2015, 18(2):351-356.
 JIANG Yingjun, YANG Xiurong, LI Ningfang, *et al.* Evaluation of vertical vibration test method of lime-fly ash-stabilized aggregate [J]. Journal of Building Materials, 2015, 18(2): 351-356. (in Chinese)
- [13] LITTLE D N, BUTTON J W, EPPS J A, et al. Structural properties of laboratory mixtures containing foamed asphalt and marginal aggregates [J].
 Transportation Research Record, 1983 (911): 104-113.

- [14] ALI G A, AL-JARALLAH M I. Properties and characteristics of vibratory-compacted bituminous mixes [M] // EMERY J, eds. Properties of Flexible Pavement Materials. West Conshohocken: ASTM International, 1983: 131-149.
- [15] 赵宏宇,蒋应军,陈浙江.马歇尔方法成型试件与路面现场性能相关性[J].公路交通科技(应用技术版),2014,10(4):146-149.
 ZHAO Hongyu, JIANG Yingjun, CHEN Zhejiang. Correlation between Marshall method molding specimen and pavement field performance [J].
 Highway Transportation Technology (Applied Technology Edition), 2014, 10(4): 146-149. (in Chinese)
- [16] 蒋应军,林宏伟,韩占闯,等.垂直振动成型冷再 生混合料疲劳特性研究 [J].大连理工大学学报, 2019, 59(3): 280-287.
 JIANG Yingjun, LIN Hongwei, HAN Zhanchuang, et al. Study of fatigue characteristics of cold recycled mixture of vertical vibration molding [J].
 Journal of Dalian University of Technology, 2019, 59(3): 280-287. (in Chinese)
- [17] JIANG Yingjun, ZHANG Yu, XUE Jinshun, et al. Performance of stone mastic asphalt mixtures fabricated by different compaction methods [J].

Applied Sciences, 2020, **10**(7): 2523.

- [18] 辛德刚,王哲人,周晓龙.高速公路沥青路面材料 与结构 [M].北京:人民交通出版社,2002.
 XIN Degang, WANG Zheren, ZHOU Xiaolong.
 Material and Structure of Asphalt Pavement for Expressway [M]. Beijing: China Communications Press, 2002. (in Chinese)
- [19] 彭 勇,孙立军. 空隙率对沥青混合料性能影响[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(5): 826-829.
 PENG Yong, SUN Lijun. Effects of air void content on asphalt mixture performance [J].
 Journal of Wuhan University of Technology (Transportation Science & Engineering), 2009, 33(5): 826-829. (in Chinese)
- [20] 樊志强.沥青混合料的体积指标及其与路用性能的 关系 [J].山西建筑, 2017, 43(4): 136-138.
 FAN Zhiqiang. Relationship of asphalt mixture volume index and pavement performance [J]. Shanxi Architecture, 2017, 43(4): 136-138. (in Chinese)
- [21] COMINSKY R, LEAHY R B, HARRIGAN E T. Level one mix design: Materials selection, compaction, and conditioning: SHRP-A-408 [R]. Washington D C: National Academy of Sciences, 1994.

Study of design standard for volume parameters of SMA-13 mixture formed by vertical vibration compaction method

JIANG Yingjun^{*1}, NI Chenyang¹, ZHANG Yu¹, DENG Changqing¹, ZHANG Wei¹, YANG Difeng¹, XUE Jinshun²

- Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, China;
 - 2. School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang 441053, China)

Abstract: In order to study the influence of volume parameters on the performance of SMA-13 mixture, the vertical vibration compaction method (VVCM) is used to form SMA-13 mixture specimen, and the reliability of VVCM is evaluated. Based on the principle of the best mechanical properties, the volume parameter standard of SMA-13 mixture is proposed. The results show that: the mechanical properties of SMA-13 mixture show convex curve change with the increase of void ratio, and the recommended void ratio design standard is 2.5%-4.0%; the mechanical properties also show convex curve change with the increase of voids filled with asphalt (VFA), and 74%-83% is recommended as VFA design standard; compared with void ratio and VFA, the voids in mineral aggregate (VMA) cannot accurately reflect the performance of the mixture. For VMA design standard, the recommended minimum value is 14.5%.

Key words: vertical vibration compaction method; volume parameters; mechanical properties; design standards