文章摘要
余南南,邱天爽,毕峰,王爱齐.基于K-SVD的医学图像特征提取和融合[J].,2012,(4):605-609
基于K-SVD的医学图像特征提取和融合
Medical image features extraction and fusion based on K-SVD
  
DOI:10.7511/dllgxb201204023
中文关键词: 图像融合;K奇异值分解(K-SVD)  计算机断层扫描(CT)  核磁共振(MR)
英文关键词: image fusion  K-singular value decomposition(K-SVD)  computer tomography(CT)  magnetic resonance(MR)
基金项目:国家自然科学基金资助项目(60872122;60940023).
作者单位
余南南,邱天爽,毕峰,王爱齐  
摘要点击次数: 1977
全文下载次数: 638
中文摘要:
      医学图像融合能够综合两种不同模态图像的信息,从而帮助医生做出准确的诊断和治疗.利用稀疏表示进行图像的特征提取和融合.首先由原始图像组成联合矩阵,通过 K-SVD 算法得出这个联合矩阵的冗余字典并求出联合矩阵的稀疏编码;然后将稀疏系数作为图像特征,并采用最大化选择算法合并相对应图像块的稀疏编码;最后通过稀疏编码和冗余字典得到融合图像.与3种流行的融合算法比较,结果表明所提算法在无噪声和有噪声的情况下都具有很好的性能.
英文摘要:
      Medical image fusion can integrate the information of two different modal images, which can provide doctors with accurate diagnosis and treatment. The image features are extracted and fused by sparse representation. Firstly, all source images are combined into a joint-matrix. The overcomplete dictionary can be trained by K-singular value decomposition (K-SVD) algorithm and the sparse codes can be acquired by joint-matrix. Secondly, the sparse codes which are considered as image features are combined with the choosing max fusion rule. Finally, the fused image is reconstructed from the combined sparse codes and the overcomplete dictionary. Compared with three state-of-the-art algorithms, the results show that the proposed method has better fusion performance in both noiseless and noisy situations.
查看全文   查看/发表评论  下载PDF阅读器
关闭