文章摘要
任爱红.基于确定可能性均值法求解模糊随机双层规划问题[J].,2018,58(2):213-220
基于确定可能性均值法求解模糊随机双层规划问题
A method based on crisp possibilistic mean value for solving fuzzy random bilevel programming problem
  
DOI:10.7511/dllgxb201802016
中文关键词: 双层规划  模糊随机变量  模糊数  K次最好算法
英文关键词: bilevel programming  fuzzy random variable  fuzzy number  Kth-best algorithm\@
基金项目:国家自然科学基金资助项目(61602010);陕西省自然科学基础研究计划项目(2017JQ6046);陕西省教育厅专项科研计划项目(17JK0047).
作者单位
任爱红  
摘要点击次数: 227
全文下载次数: 267
中文摘要:
      针对目标函数和约束函数中系数均为模糊随机变量的双层规划问题,基于模糊随机变量的期望值概念,将原模糊随机双层规划问题变形为一个模糊双层规划问题.采用模糊数的确定可能性均值对上下层目标函数进行去模糊化,利用基于可能性测度的模糊机会约束方法处理模糊约束函数,提出模糊随机双层确定可能性均值-机会约束规划模型,并给出其确定等价模型,再运用K次最好算法求解最终确定模型.最后通过数值例子验证了所提方法的可行性.
英文摘要:
      A kind of bilevel programming problem involving fuzzy random variable coefficients in both objective functions and constraint functions is considered. Based on the notion of the expectation of a fuzzy random variable, the fuzzy random bilevel programming problem is converted into a fuzzy bilevel programming problem. Subsequently, the crisp possibilistic mean value of a fuzzy number is used to defuzzy the upper and lower level objective functions and fuzzy chance constrained method based on possibility is applied to handle fuzzy constraint functions, and then a fuzzy random bilevel crisp possibilistic mean value-chance constrained programming model is developed. Then the crisp equivalent model is given and the Kth-best algorithm is employed to deal with it. Finally, numerical examples testify the feasibility of the proposed method.
查看全文   查看/发表评论  下载PDF阅读器
关闭