文章摘要
蒋应军,林宏伟,韩占闯,陈浙江,胡永林.垂直振动成型冷再生混合料疲劳特性研究[J].,2019,59(3):280-287
垂直振动成型冷再生混合料疲劳特性研究
Study of fatigue characteristics of cold recycled mixture of vertical vibration molding
  
DOI:10.7511/dllgxb201903009
中文关键词: 冷再生混合料  疲劳特性  垂直振动法  RAP掺量
英文关键词: cold recycled mixture  fatigue characteristics  vertical vibration method  RAP content
基金项目:浙江交通科技项目(2016-2-17).
作者单位
蒋应军,林宏伟,韩占闯,陈浙江,胡永林  
摘要点击次数: 664
全文下载次数: 532
中文摘要:
      为深入研究乳化沥青冷再生混合料的疲劳特性,采用更符合混合料现场压实工况的垂直振动法成型圆柱体试件.研究了RAP掺量、成型方法及浸水环境对冷再生混合料疲劳特性的影响,应用Weibull分布建立冷再生混合料疲劳方程,并借助扫描电镜揭示了冷再生的疲劳抗裂机理.结果表明:新集料掺量对冷再生混合料疲劳性能有显著影响,疲劳性能随新集料掺量的增加呈抛物线变化趋势,当新集料掺量为20%时抗疲劳性能最优;垂直振动法设计冷再生混合料在应力作用下的抗疲劳性能及对应力变化敏感性优于马歇尔法;与未浸水试件相比,不同应力水平下浸水试件的疲劳寿命均缩短,对应力变化更加敏感;水泥-乳化沥青胶浆相互渗透胶结,并将集料紧密黏结,形成较致密的网状结构,有效改善胶浆与集料的界面协调变形,延缓裂缝发展.
英文摘要:
      In order to study the fatigue characteristics of the emulsified asphalt cold recycled mixture, the cylindrical test piece was formed by the vertical vibration method which was more in line with the compaction conditions of the mixture. The effects of reclaimed asphalt pavement material (RAP) content, forming method and water immersion environment on the fatigue characteristics of cold recycled mixture were studied. The fatigue equation of cold recycled mixture was established by Weibull distribution, and the fatigue anti-cracking mechanism of cold recycle was revealed by scanning electron microscopy. The results show that the new aggregate content has a significant effect on the fatigue performance of the cold recycled mixture. The fatigue performance shows a parabolic trend with the increase of the new aggregate content. When the new aggregate content is 20%, the fatigue performance is optimal. The cold recycled mixtures designed by vertical vibration method have better fatigue resistance and stress sensitivity than the Marshall method under stress. Compared with the un-immersed test piece, the fatigue life of the immersed test piece under different stress levels decreases, and is more sensitive to stress changes; cement-emulsified asphalt cement interpenetrates and cements, and the aggregates are tightly bonded to form a denser network structure, which effectively improves the interface deformation coordination of the cement and aggregate, and delays the development of cracks.
查看全文   查看/发表评论  下载PDF阅读器
关闭