文章摘要
谢丽霞,汪子荧.一种分段集群异常作业预测方法[J].,2019,59(4):427-433
一种分段集群异常作业预测方法
A prediction method of staged cluster anomaly job
  
DOI:10.7511/dllgxb201904014
中文关键词: 集群异常作业  分段预测  实时预测  动态特征  门控递归单元
英文关键词: cluster anomaly job  staged prediction  real-time prediction  dynamic features  gated recurrent unit
基金项目:国家自然科学基金民航联合研究基金资助项目(U1833107);国家科技重大专项资助项目(2012ZX03002002);中央高校基本科研业务费专项资金资助项目(ZYGX2018028).
作者单位
谢丽霞,汪子荧  
摘要点击次数: 70
全文下载次数: 87
中文摘要:
      针对现有集群异常作业预测方法预测效率低、预测时间长的问题,提出一种分段集群异常作业预测(SCAJP)方法.该方法分为离线预测和在线预测两个阶段:离线预测阶段,依据作业子任务的静态特征对子任务终止状态进行预测,并仅在线预测此阶段的正常子任务所属作业;在线预测阶段,在计算作业子任务动态特征的同时,采用改进门控递归单元(IGRU)神经网络根据动态特征实时预测任务终止状态是否异常.两个阶段的最后均根据作业与其子任务的相关性检索异常作业,实现对异常作业的预测.实验结果表明,该方法在灵敏度、精确度和预测时间方面明显优于其他方法.
英文摘要:
      Aiming at the problems of low prediction efficiency and long prediction time of the existing cluster anomaly job prediction methods, a staged cluster anomaly job prediction (SCAJP) method is proposed. This method is divided into offline stage and online stage. The final state of the job′s sub-tasks is predicted according to their static features in the offline stage, then the prediction is only done for the job to which the normal sub-task belongs. In online stage, while calculating the dynamic features of the job′s sub-tasks, the improved gated recurrent unit (IGRU) neural network is used to predict whether the task termination status is anomaly according to the dynamic features in real time. At the end of the both stages, the anomaly job is obtained based on the relevance between the job and its sub-tasks to finish the prediction of the anomaly job. The experimental results show that this method outperforms other methods in terms of sensitivity, accuracy and prediction time obviously.
查看全文   查看/发表评论  下载PDF阅读器
关闭